Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Druckformat: 0278-940X
ISSN Online: 1943-619X

Volumes:
Volumen 47, 2019 Volumen 46, 2018 Volumen 45, 2017 Volumen 44, 2016 Volumen 43, 2015 Volumen 42, 2014 Volumen 41, 2013 Volumen 40, 2012 Volumen 39, 2011 Volumen 38, 2010 Volumen 37, 2009 Volumen 36, 2008 Volumen 35, 2007 Volumen 34, 2006 Volumen 33, 2005 Volumen 32, 2004 Volumen 31, 2003 Volumen 30, 2002 Volumen 29, 2001 Volumen 28, 2000 Volumen 27, 1999 Volumen 26, 1998 Volumen 25, 1997 Volumen 24, 1996 Volumen 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2014012131
pages 351-367

A Multi-Step Algorithm for Measuring Airway Luminal Diameter and Wall Thickness in Lung CT Images

Mohammadreza Heydarian
Department of Computing and Software, McMaster University, Hamilton Ontario, Canada
Michael D. Noseworthy
McMaster School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Imaging Research Centre, St. Joseph's Healthcare, Hamilton, Ontario, Canada; Department of Radiology, McMaster University, Hamilton, Ontario, Canada; Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
Markad V. Kamath
Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5 Canada
Colm Boylan
Department of Radiology, McMaster University and St. Joseph's Health Care Hamilton
W. F. S. Poehlman
Department of Computing and Software, McMaster University, Hamilton Ontario, Canada

ABSTRAKT

Accurate measurements of airway diameter and wall thickness are important parameters in understanding numerous pulmonary diseases. Here, we describe an automated method of measuring small airway luminal diameter and wall thickness over numerous contiguous computed tomography (CT) images. Using CT lung images from 22 patients and an airway phantom, a seeded region-growing algorithm was first applied to identify the lumen of the airway. The result was applied as an initial region for boundary determination using the level set method. Once found, subsequent algorithmic expansion of the luminal border was used to calculate airway wall thickness. This algorithm automatically evaluates neighboring slices of the airway and measures the airway luminal diameter and wall thickness. This approach also detects airway bifurcations. Our new procedure provides rapid, automated, accurate, and clinically important lung airway measurements that would be useful to radiologists who use CT images for pulmonary disease assessment.


Articles with similar content:

A Morphological Algorithm for Measuring Angle of Airway Branches in Lung CT Images
Critical Reviews™ in Biomedical Engineering, Vol.42, 2014, issue 5
Mohammadreza Heydarian, Markad V. Kamath, W. F. S. Poehlman, Michael D. Noseworthy, Colm Boylan
ASSESSMENT OF RHEOLOGICAL PROPERTIES OF BLOOD AS A FUNCTION OF HEALTH STATUS: A NOVEL POINT OF CARE DEVICE FOR POPULATION BASED SCREENING
4th Thermal and Fluids Engineering Conference, Vol.13, 2019, issue
Siddharth Singh Yadav , Basant Singh Sikarwar, Rajiv Janardhanan, Priya Ranjan
Computational Analyses and Design Improvements of Graft-to-Vein Anastomoses
Critical Reviews™ in Biomedical Engineering, Vol.28, 2000, issue 1&2
P. W. Longest, Clement Kleinstreuer, P. J. Andreotti
Deep Learning in Gastrointestinal Endoscopy
Critical Reviews™ in Biomedical Engineering, Vol.44, 2016, issue 6
Markad V. Kamath, Sandeep Roopra, Malika P. Ganguli, Siwar Albashir, David Armstrong, Neha Kantipudi, Vivek Patel
Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels
Critical Reviews™ in Biomedical Engineering, Vol.29, 2001, issue 1
Joseph P. Archie, Jr., Sinjae Hyun, P. W. Longest, Clement Kleinstreuer, J. R. Buchanan, George A. Truskey