Abo Bibliothek: Guest
Critical Reviews™ in Biomedical Engineering

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 0278-940X

ISSN Online: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Acoustic Emission and Nondestructive Evaluation of Biomaterials and Tissues

Volumen 23, Ausgabe 3-4, 1995, pp. 221-306
DOI: 10.1615/CritRevBiomedEng.v23.i3-4.20
Get accessGet access

ABSTRAKT

Acoustic emission (AE) is an acoustic wave generated by the release of energy from localized sources in a material subjected to an externally applied stimulus. This technique may be used nondestructively to analyze tissues, materials, and biomaterial/tissue interfaces. Applications of AE include use as an early warning tool for detecting tissue and material defects and incipient failure, monitoring damage progression, predicting failure, characterizing failure mechanisms, and serving as a tool to aid in understanding material properties and structure-function relations. All these applications may be performed in real time.
This review discusses general principles of AE monitoring and the use of the technique in 3 areas of importance to biomedical engineering: (1) analysis of biomaterials, (2) analysis of tissues, and (3) analysis of tissue/biomaterial interfaces. Focus in these areas is on detection sensitivity, methods of signal analysis in both the time and frequency domains, the relationship between acoustic signals and microstructural phenomena, and the uses of the technique in establishing a relationship between signals and failure mechanisms.

REFERENZIERT VON
  1. Paschos N. K., Aggelis D. G., Barkoula N.-M., Paipetis A., Gartzonikas D., Matikas T. E., Georgoulis A. D., An Acoustic Emission Study for Monitoring Anterior Cruciate Ligament Failure Under Tension, Experimental Mechanics, 53, 5, 2013. Crossref

  2. Funk James R. , Crandall Jeff R. , Tourret Lisa J. , MacMahon Conor B. , Bass Cameron R. , Patrie James T. , Khaewpong Nopporn , Eppinger Rolf H. , The Axial Injury Tolerance of the Human Foot/Ankle Complex and the Effect of Achilles Tension , Journal of Biomechanical Engineering, 124, 6, 2002. Crossref

  3. Turner Charles, Burr David, Experimental Techniques for Bone Mechanics, in Bone Mechanics Handbook, Second Edition, 2001. Crossref

  4. Van Toen C., Street J., Oxland T.R., Cripton P.A., Acoustic emission signals can discriminate between compressive bone fractures and tensile ligament injuries in the spine during dynamic loading, Journal of Biomechanics, 45, 9, 2012. Crossref

  5. Browne M., Jeffers J. R. T., Saffari N., Nondestructive evaluation of bone cement and bone cement/metal interface failure, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 9999B, 2009. Crossref

  6. Yi Yang-Jin, Effect of mechanical surface treatment on the fracture resistance and interfacial bonding failure of Y-TZP zirconia, Journal of Dental Rehabilitation and Applied Science, 30, 2, 2014. Crossref

  7. Azangwe G, Fraser K, Mathias K.J, Siddiqui A.M, In vitro monitoring of rabbit anterior cruciate ligament damage by acoustic emission, Medical Engineering & Physics, 22, 4, 2000. Crossref

  8. Ereifej Nadia, Silikas Nick, Watts David C., Initial versus final fracture of metal-free crowns, analyzed via acoustic emission, Dental Materials, 24, 9, 2008. Crossref

  9. Leitgeb Norbert, Improved diagnosis of human joint, Open Journal of Clinical Diagnostics, 03, 04, 2013. Crossref

  10. Kohn D.H., Porous Coatings in Orthopedics, in Comprehensive Biomaterials, 2011. Crossref

  11. Sánchez-Molina D., Martínez-González E., Velázquez-Ameijide J., Llumà J., Soria M.C. Rebollo, Arregui-Dalmases C., A stochastic model for soft tissue failure using acoustic emission data, Journal of the Mechanical Behavior of Biomedical Materials, 51, 2015. Crossref

  12. Pacheco-Salazar O.F., Wakayama Shuichi, Sakai Takenobu, Cauich-Rodríguez J.V., Ríos-Soberanis C.R., Cervantes-Uc J.M., Evaluation of damage progression and mechanical behavior under compression of bone cements containing core–shell nanoparticles by using acoustic emission technique, Journal of the Mechanical Behavior of Biomedical Materials, 46, 2015. Crossref

  13. EREIFEJ Nadia S, OWEIS Yara G, ALTARAWNEH Sandra K, Fracture of fiber-reinforced composites analyzed <i>via</i> acoustic emission, Dental Materials Journal, 34, 4, 2015. Crossref

  14. Mavrogordato Mark, Taylor Mark, Taylor Andrew, Browne Martin, Real time monitoring of progressive damage during loading of a simplified total hip stem construct using embedded acoustic emission sensors, Medical Engineering & Physics, 33, 4, 2011. Crossref

  15. FitzPatrick Anthony J., Rodgers Geoffrey W., Hooper Gary J., Woodfield Tim B.F., Development and validation of an acoustic emission device to measure wear in total hip replacements in-vitro and in-vivo, Biomedical Signal Processing and Control, 33, 2017. Crossref

  16. Kohn D.H., 7.5 Porous Coatings in Orthopedics ☆, in Comprehensive Biomaterials II, 2017. Crossref

  17. Browne M, Roques A, Taylor A, The acoustic emission technique in orthopaedics - a review, The Journal of Strain Analysis for Engineering Design, 40, 1, 2005. Crossref

  18. Loman Miminorazeansuhaila, Husin Che Ku Eddy Nizwan Che Ku, Yusof Mohd Imran, Yusof Mohd Fadhlan, Utilization of the Acoustic Emission Technology in Bone Tissues, Applied Mechanics and Materials, 471, 2013. Crossref

  19. Zheng Yifan, Pierce Aidan, Wagner Willi L., Scheller Henrik V., Mohnen Debra, Tsuda Akira, Ackermann Maximilian, Mentzer Steven J., Analysis of pectin biopolymer phase states using acoustic emissions, Carbohydrate Polymers, 227, 2020. Crossref

  20. Somasundaram Karthik, Sherman Donald, Begeman Paul, Ciarelli Traci, McCarty Scott A., Kochkodan James J., Demetropoulos Constantine K., Cavanaugh John M., Mechanisms and timing of injury to the thoracic, lumbar and sacral spine in simulated underbody blast PMHS impact tests, Journal of the Mechanical Behavior of Biomedical Materials, 116, 2021. Crossref

  21. Machin Thomas D., Wei Kent, Greenwood Richard W., Simmons Mark J.H., In-line characterisation of continuous phase conductivity in slurry flows using artificial intelligence tomography, Minerals Engineering, 173, 2021. Crossref

  22. Steppe Kathy, Aggelis Dimitrios G., Grosse Christian U., AE in Biological Materials, in Acoustic Emission Testing, 2022. Crossref

  23. Shridharani Jay K., Ortiz-Paparoni Maria A., Op 't Eynde Joost, Bass Cameron R., Acoustic emissions in vertebral cortical shell failure, Journal of Biomechanics, 117, 2021. Crossref

  24. Reyhanoglu Mahmut, Introductory Chapter: Acoustic Emission, in Acoustic Emission - New Perspectives and Applications, 2022. Crossref

  25. Parkesh Raman, Clive Lee T., Gunnlaugsson Thorfinnur, Fluorescence imaging of bone cracks (microdamage) using visibly emitting 1,8-naphthalimide-based PET sensors, Tetrahedron Letters, 50, 28, 2009. Crossref

  26. Gali Sivaranjani, Sarjerao Mane Laxmikant, MA Nagarjuna, Bhat M. R., Shear bond strength of bi-layered all ceramics systems with finite element and acoustic emission analysis, Journal of Adhesion Science and Technology, 36, 9, 2022. Crossref

  27. Ruther Cathérine, Nierath Hannes, Ewald Hartmut, Cunningham James L., Mittelmeier Wolfram, Bader Rainer, Kluess Daniel, Investigation of an acoustic-mechanical method to detect implant loosening, Medical Engineering & Physics, 35, 11, 2013. Crossref

  28. Khokhlova Liudmila, Komaris Dimitrios-Sokratis, Tedesco Salvatore, O'Flynn Brendan, Assessment of Hip and Knee Joints and Implants Using Acoustic Emission Monitoring: A Scoping Review, IEEE Sensors Journal, 21, 13, 2021. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain