Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Druckformat: 0278-940X
ISSN Online: 1943-619X

Volumes:
Volumen 47, 2019 Volumen 46, 2018 Volumen 45, 2017 Volumen 44, 2016 Volumen 43, 2015 Volumen 42, 2014 Volumen 41, 2013 Volumen 40, 2012 Volumen 39, 2011 Volumen 38, 2010 Volumen 37, 2009 Volumen 36, 2008 Volumen 35, 2007 Volumen 34, 2006 Volumen 33, 2005 Volumen 32, 2004 Volumen 31, 2003 Volumen 30, 2002 Volumen 29, 2001 Volumen 28, 2000 Volumen 27, 1999 Volumen 26, 1998 Volumen 25, 1997 Volumen 24, 1996 Volumen 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v25.i1.10
pages 1-81

Computational and Numerical Methods for Bioelectric Field Problems

Chris R. Johnson
Scientific Computing and Imaging Institute, School of Computing University of Utah Salt Lake City, Utah 84112, USA

ABSTRAKT

Fundamental problems in electrophysiology can be studied by computationally modeling and simulating the associated microscopic and macroscopic bioelectric fields. To study such fields computationally, researchers have developed a variety of numerical and computational techniques. Advances in computer architectures have allowed researchers to model increasingly complex biophysical systems. Modeling such systems requires a researcher to apply a wide variety of computational and numerical methods to describe the underlying physics and physiology of the associated three-dimensional geometries. Issues naturally arise as to the accuracy and efficiency of such methods. In this paper we review computational and numerical methods of solving bioelectric field problems. The motivating applications represent a class of bioelectric field problems that arise in electrocardiography and electroencephalography.