Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.49 5-jähriger Impact-Faktor: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v14.i2.50
pages 169-177


Souad Messai
Laboratoire d'Energétique et des Transferts Thermiques et Massiques, Faculté des Sciences de Tunis, Campus Universitaire 1060, Tunis, Tunisie
Jalila Sghaier
Département d'Energétique, Ecole Nationale d'Ingénieurs de Monastir, Avenue Ibn Eljazzar, 5019 Monastir, Tunisie
Ali Belghith
Faculte des Sciences de Tunis, Laboratoire des Transferts de Chaleur et de Masse, Campus Universitaire, 1060 Tunis, Tunisia


A one-dimensional mathematical model describing heat and mass transfer during the drying of a packed bed of porous particles with superheated steam and humid air has been developed. This model is based on the scale-changing approach. During superheated steam drying, the expression of mass flux is based on the resolution of the single-particle model: new correlations of different drying parameters are determined, whereas in the case of humid air drying the expression of mass flux is deduced from the literature. The numerical resolution of macroscopic equations describing heat and mass transfer during the drying of a packed bed is carried out by the finite-volume method. Experimental data for spherical porous alumina particles reported in the literature were used for the validation of the model. When comparing superheated steam and humid air drying processes, a temperature has been determined at which the drying rates during these two processes are equal. This temperature is called the inversion temperature. The latter is about 418 K for corn.