Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.752 5-jähriger Impact-Faktor: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v16.i5.60
pages 459-467

AN EXPERIMENTAL STUDY OF INTERACTION BETWEEN NANOPARTICLES' DEPOSITION ON A SINTERED POROUS MEDIUM AND MIGRATORY FINES

Milad Ahmadi
Institute of Petroleum Engineering, University of Tehran, Tehran, Iran
Ali Habibi
Institute of Petroleum Engineering, University of Tehran, Tehran, Iran
Peyman Pourafshary
Institute of Petroleum Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, IPE, North Kargar, Tehran, Iran
Shahab Ayatollahi
Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran

ABSTRAKT

One concern of oil production in sandstone reservoirs is fines migration. The migratory fines could plug throats and decline oil production; hence, introducing some methods for fines fixation could improve production from wells and reduce formation damage. One possible approach is injection of nanofluid near the wellbore to propagate into the drainage area zone and fix the fines. Nanofluid contains nanoparticles (NPs) which have special unique characteristics such as small size, high specific surface area, and high ability for adsorption. In this study, a sintered and consolidated porous medium was employed to study the influence of nanoparticles on fines migration. For this purpose, porous media were coated with nanoparticles with two different methods and the efficiency of fines fixation by each method and different nanoparticles was calculated and compared. In addition to the experiments, zeta potential measurements were performed to show the effect of nanoparticles on the surface forces in porous media. Based on our experiments and zeta potential measurements, we observe that magnesia nanoparticles could be an appropriate candidate to reduce the problem of fines migration. Magnesia nanoparticles could considerably reduce fines migration and simultaneously affect permeability reduction less than an uncoated state.


Articles with similar content:

INFLUENCE OF CNT-NANOPARTICLES IN THE FILTRATE CHARACTERISTICS AND FILTER CAKE FORMATION OF A WATER-BASED DRILLING FLUID
5th Thermal and Fluids Engineering Conference (TFEC), Vol.9, 2020, issue
Mahmood Amani, Arnel Carvero, Anoop Kanjirakat, Reza Sadr
LOW-SALINITY WATER FLOODING: EVALUATING THE EFFECT OF SALINITY ON OIL AND WATER RELATIVE PERMEABILITY, WETTABILITY, AND OIL RECOVERY
Special Topics & Reviews in Porous Media: An International Journal, Vol.5, 2014, issue 2
S. Jafar Fathi, S. Alireza Tabatabae-Nejad, Sina Shaddel
A MODEL FOR LOW SALINITY FLOODING EXPERIMENTS: DISSOLUTION AND ION EXCHANGE
Journal of Porous Media, Vol.18, 2015, issue 3
Helmer Andre Friis, Aruoture Voke Omekeh, Steinar Evje, Ingebret Fjelde
STUDY ON WEAK GEL'S MOBILITY IN POROUS MEDIA USING NUCLEAR MAGNETIC RESONANCE TECHNIQUE
Special Topics & Reviews in Porous Media: An International Journal, Vol.9, 2018, issue 1
Peiqiang Yang, Qinfeng Di, Feng Ye, Jingnan Zhang, Shuai Hua, Wenchang Wang
NUMERICAL INVESTIGATIONS ON FORMATION CONDITIONS OF THE THIEF ZONE BY LEVEL SET METHOD
Journal of Porous Media, Vol.22, 2019, issue 2
Chunlei Yu , Shuoliang Wang, Hui Zhao