Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 1.199 5-jähriger Impact-Faktor: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2017014740
pages 1217-1236

EXPERIMENTAL INVESTIGATION OF LOOP HEAT PIPE APPLIED IN A RAILING-TYPE COLLECTOR SOLAR WATER HEATER

Chien Huang
Engineering & System Science Department, National Tsing-Hua University 101, Sec. 2, Kuang Fu Rd., Hsinchu, Taiwan
Wei-Keng Lin
Department of Engineering and System Science, National Tsing-Hua University, Hsinchu City, Taiwan
Yu-Lin Chuang
Department of Engineering and System Science, National Tsing Hua University, Hsinchu City, Taiwan

ABSTRAKT

This paper presents an experimental examination of a railing-type collector solar water heater (RTCSWH), employing a loop heat pipe (LHP) as a heat transfer device. The structure and characteristics of the RTCSWH are also outlined. The LHP is a high-efficiency heat transfer device capable of transporting thermal energy over long distances without the need for other mechanical forces, such as pumps. This makes LHPs particularly suitable for applications involving solar water heaters. We conducted various experiments to investigate the start-up behavior and thermal storage efficiency under various filling ratios with different heat loads and tilt angles. The experimental results revealed that 70% is the ideal filling ratio for an RTCSWH and that the heat load presents critical limitations with regard to stable operations. The highest thermal storage efficiency obtained in this study was 77%. We also determined that when a railing-type collector has a nonzero tilt angle, loose limitations pertaining to heat load can be relaxed without sacrificing stable operations. We also investigated the characteristics of the start-up behavior, including oscillation, overshoot, dry out, and failure.


Articles with similar content:

MULTI-PARAMETRIC INVESTIGATION ON THE THERMAL INSTABILITY OF A CLOSED LOOP PULSATING HEAT PIPE
Heat Pipe Science and Technology, An International Journal, Vol.5, 2014, issue 1-4
V. Manno, Sauro Filippeschi, Marco Marengo, Mauro Mameli
PULSATING HEAT PIPE IN HYPERGRAVITY CONDITIONS
Heat Pipe Science and Technology, An International Journal, Vol.6, 2015, issue 1-2
Lucio Araneo, Sauro Filippeschi, Marco Marengo, Miriam Manzoni, Mauro Mameli
ANALYSIS OF THE EFFECT OF THE STRUCTURE OF A CAPILLARY PUMPED LOOP ON TEMPERATURE OF DUAL CPUs 1U CLOUD SERVERS
Heat Transfer Research, Vol.44, 2013, issue 1
Wei-Keng Lin, Yeun-Ming Tzou, Yu-An Lin
Effects of Filling Ratio and Input Heat Flux on the Thermal Performance and Flow Pattern of a Pulsating Heat Pipe
International Heat Transfer Conference 15, Vol.50, 2014, issue
Jungseok Lee, Sung Jin Kim
INFLUENCE OF VAPOR BUBBLES ON THE THERMAL PERFORMANCE OF A TWO-PHASE CLOSED THERMOSYPHON LOOP WITH A LIQUID HEAT TRANSFER AGENT
Heat Transfer Research, Vol.47, 2016, issue 12
Chaohong Guo, Lingjiao Wei, Dazhong Yuan, Dawei Tang