Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2011002615
pages 217-231

Natural Convection Heat Transfer in Right Triangular Enclosures with a Cold Inclined Wall and a Hot Vertical Wall

Mostafa Mahmoodi
Department of Mechanical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran; Department of Mechanical Engineering, University of Kashan, Kashan 87317-53153, Iran

ABSTRAKT

Laminar natural convection fluid flow and heat transfer in right triangular cavities with a varying aspect ratio has been investigated numerically. The vertical wall of triangular cavities is kept at a high temperature, Th, while the inclined wall is kept at a relatively low temperature, Tc, and the base wall is insulated. The nonlinear coupled governing equations have been solved using the finite volume method while the coupling between velocity and pressure fields is done using the SIMPLE algorithm. Calculations were performed for the aspect ratio and the Rayleigh number ranging from 0.25 to 4 and from 104 to 106, respectively. The obtained results show that for all cavity aspect ratios and at all range of Rayleigh number considered a primary clockwise eddy if formed inside the cavity. Moreover it is found that with increase in the aspect ratio, the average Nusselt number of a hot vertical wall increases significantly.


Articles with similar content:

MIXED CONVECTIVE FLOW AND HEAT TRANSFER THROUGH A HORIZONTAL CHANNEL WITH SURFACE MOUNTED OBSTACLES
Journal of Enhanced Heat Transfer, Vol.19, 2012, issue 4
Arun K. Saha, Twinkle Malik
EFFECTS OF RADIAL FINS ON THE LAMINAR NATURAL CONVECTION OF A NANOFLUID IN CONCENTRIC ANNULI
Computational Thermal Sciences: An International Journal, Vol.4, 2012, issue 2
Maryam Arbaban, Ghanbar Ali Sheikhzadeh, A. Arefmanesh
NUMERICAL INVESTIGATION OF CONJUGATE HEAT TRANSFER FROM LAMINAR WALL JET FLOW OVER A SHALLOW CAVITY
Heat Transfer Research, Vol.49, 2018, issue 12
Maheandera Prabu Paulraj, Dawid Taler, Jan Taler, Pawel Oclon, Andrea Vallati, Rajesh Kanna Parthasarathy
NUMERICAL STUDY OF NON-DARCY NATURAL CONVECTION FROM TWO DISCRETE HEAT SOURCES IN A VERTICAL ANNULUS
Journal of Porous Media, Vol.17, 2014, issue 5
Sankar M, Bongsoo Jang, Younghae Do
A FINITE DIFFERENCE STUDY OF NATURAL CONVECTION IN COMPLEX ENCLOSURES
International Heat Transfer Conference 7, Vol.3, 1982, issue
J. R. Lloyd, K. T. Yang, L.C. Chang