Abo Bibliothek: Guest
Heat Transfer Research

Erscheint 18 Ausgaben pro Jahr

ISSN Druckformat: 1064-2285

ISSN Online: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

NUMERICAL SIMULATION OF LAMINAR FILM CONDENSATION OF VAPOR IN A HORIZONTAL MINICHANNEL WITH AND WITHOUT A NONCONDENSABLE GAS

Volumen 47, Ausgabe 2, 2016, pp. 141-155
DOI: 10.1615/HeatTransRes.2015010730
Get accessGet access

ABSTRAKT

A steady two-dimensional volume of fluid (VOF) simulation of laminar film condensation of vapor with and without a noncondensable gas inside a 1-mm horizontal minichannel is presented. The uniform interface temperature and wall temperature are fixed as boundary conditions, and the flow pattern is expected to be annular. The numerical simulation results display the evolution of the liquid−gas interface, Nu, and heat flux. It is found that the global effect of gravity is negligible. Moving downstream the minichannel, the liquid film grows rapidly near the entrance and then remains unchanged in the rest of the minichannel till the end. Higher inlet velocity and wall temperature of the minichannel lead to the augmentation of the average Nu value of condensation. The existence of a noncondensable gas makes the heat flux to decrease sharply compared to that vapor condensation, while a higher inlet velocity will aggravate this effect. Meanwhile, the noncondensable gas with smaller thermal conductivity would give rise to greater reduction of heat flux as a result of the higher thermal resistance in the noncondensable gas layer.

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain