Abo Bibliothek: Guest
Heat Transfer Research

Erscheint 18 Ausgaben pro Jahr

ISSN Druckformat: 1064-2285

ISSN Online: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

THERMODYNAMIC ANALYSIS AND SYSTEM DESIGN OF THE SUPERCRITICAL CO2 BRAYTON CYCLE FOR WASTE HEAT RECOVERY OF GAS TURBINE

Volumen 51, Ausgabe 2, 2020, pp. 129-146
DOI: 10.1615/HeatTransRes.2019028447
Get accessGet access

ABSTRAKT

The supercritical CO2 cycle is regarded as a potential replacement of steam on concentrated solar power, new generation nuclear reactor, fossil combustion power, waste heat recovery, and so on. It has advantages in high energy flux density, compact equipment, higher cycle efficiency, product modularization. In this paper, the thermodynamic analysis of supercritical CO2 Brayton cycle for the waste heat recovery of the LM2500 gas turbine is discussed with the energetic and exergetic analyses via a system simulation program. The efficiency of waste heat utilization should be considered as the prior target in the system design and optimization. As regards the basic cycle, there are huge energy/exergy losses from the boiler due to the high temperature exit gas and the temperature gap between the exhausted gas and the supercritical CO2. Besides, in the recuperator, the exergy loss is also significant due to the temperature difference on both sides. Therefore, an energy classification utilization cycle (the advanced cycle) is designed and analyzed. In both the energetic and exergetic analyses, the advanced cycle shows good system performances. Through the optimization, the advanced cycle can output the maximum net power as 8.81-MW higher 2.35MW output than the basic cycle, with the efficiency of waste heat utilization of 25.10% and the efficiency of exergy of 64.78% increased by 6.7% and 17.28% compared to the basic cycle, respectively.

REFERENZEN
  1. Allam, R.J., Palmer, M.R., William Brown Jr., G., Fetvedt, J., Freed, D., Nomoto, H., Itoh, M., Okita, N., and Jones Jr., C., High Efficiency and Low Cost of Electricity Generation from Fossil Fuels While Eliminating Atmospheric Emissions, Including Carbon Dioxide, Energy Procedia, vol. 37, pp. 1135-1149, 2013.

  2. Ayub, A., Sheikh, N.A., Tariq, R.i Khan, M.M., and Invernizzi, C.M., Exergetic Optimization and Comparison of Combined Gas Turbine Supercritical CO2 Power Cycles, J. Renew. Sustain. Energy, vol. 10, 044703, 2018.

  3. Battisti, F.G., Cardemil, J.M., and da Silva, A.K., A Multivariable Optimization of a Brayton Power Cycle Operating with CO2 as Working Fluid, Energy, vol. 112, pp. 908-916, 2016.

  4. Bazdidi-Tehrani, F., Abedinejad, M.S., and Yazdani-Ahmadabadi, H., Influence of Variable Air Distribution on Pollutant Emissions in a Model Wall Jet Can Combustor, Heat Transf. Res., vol. 49, no. 17, pp. 1667-1688, 2018.

  5. Chaudhary, A., Tribedi, Y., Mulchand, A., Chauhan, H., Dave, P., Patel, J., and Mehta, V., Feasibility Study of Supercritical CO2 Rankine Cycle for Waste Heat Recovery, Proc. of the 6th Int. Symp.-Supercritical CO2 Power Cycles, Pittsburgh, PA, pp. 1-14, 2018.

  6. Chen, Y., Zhang, Y., Liu, W., and Li, H., Simulation Study on Supercritical Carbon Dioxide Thermal Power System, Therm. Power Generation, vol. 46, no. 2, pp. 22-27, 2017.

  7. DRESSER-RAND, Environmental Solution ECHOGEN EPS100 Waste Heat Recovery System, accessed May 22, 2018, from https://www.echogen.com/our-solution/product-series/eps100/, 2018.

  8. Garg, P., Srinivasan, K., Dutta, P., and Kumar, P., Comparison of CO2 and Steam in Transcritical Rankine Cycles for Concentrated Solar Power, Energy Procedia, vol. 49, pp. 1138-1146, 2014.

  9. Gianfranco, A., Method for Obtaining Mechanical Energy from a Thermal Gas Cycle with Liquid Phase Compression. US Patent No. 3376706, filed Nov. 26, 1965, and issued Apr. 9, 1968.

  10. Handwerk, C.S., Driscoll, M.J., and Hejzlar, P., In-Situ Species, Optimized Core Design of a Supercritical Carbon Dioxide-Cooled Fast Reactor, Nuclear Technol., vol. 164, no. 3, pp. 320-336, 2018.

  11. Harvego, E.A. and McKellar M.G., Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications, Proc. of the ASME 2011 Int. Mechanical Engineering Congress & Exposition, pp. 1-7, 2011.

  12. Hong, X., Chen, J., Lyu, H., Sheng, D., Li, W., and Li, H., Advanced Exergoenvironmental Evaluation for a Coal-Fired Power Plant of Near-Zero Air Pollutant Emission, Appl. Therm. Eng., vol. 128, pp. 1139-1150, 2018.

  13. Hu, L., Chen, D. Gao, S., and Cao , Y., Thermodynamic and Heat Transfer Analyses of the S-CO2 Brayton Cycle as the Heat Transport System of a Nuclear Reactor, Heat Transf. Res., vol. 47, no. 10, pp. 907-925, 2016.

  14. Kim, Y.M., Kim, C.G., and Favrat, D., Transcritical or Supercritical CO2 Cycles Using Both Low-and High-Temperature Heat Sources, Energy, vol. 43, pp. 402-415, 2012.

  15. Kulhnek, M. and Dostal, V., Supercritical Carbon Dioxide Cycles Thermodynamic Analysis and Comparison, Proc. of Student's Conf. 2009 at Faculty of Mechanical Engineering of Czech Technical University, Prague, Czech, 2009.

  16. Liao, J., Liu, X., Zheng, Q., and Zhang, H., Analysis of the Power Generation Cycle Characteristics of Supercritical Carbon Dioxide, J. Eng. Therm. Energy Power, vol. 31, no. 5, pp. 40-46, 2016.

  17. Luo, L., Du, W., Wang, S., Wu, W., and Zhang, X., Multi-Objective Optimization of the Dimple/Protrusion Channel with Pin Fins for Heat Transfer Enhancement, Int. J. Numer. Methods Heat Fluid Flow, vol. 29, no. 2, pp. 790-813, 2019.

  18. Ma, Y., Liu, M., Yan J., and Liu, J., Thermodynamic Study of Main Compression Intercooling Effects on Supercritical CO2 Recompression Brayton Cycle, Energy, vol. 140, pp. 746-756, 2017.

  19. Mahapatra, P., Albright, J., Zitney, S.E., and Liese, E.A., Advanced Regulatory Control of a 10 MWe Supercritical CO2 Recompression Brayton Cycle Towards Improving Power Ramp Rates, Proc. of the 6th Int. Symp.-Supercritical CO2 Power Cycles, pp. 1-17, 2018.

  20. Manjunath, K., Sharma, O.P., Tyagi, S.K., and Kaushik, S.C., Thermodynamic Analysis of a Supercritical-Transcritical CO2 Based Waste Heat Recovery Cycle for Shipboard Power and Cooling Applications, Energy Convers. Manage., vol. 155, pp. 262-275, 2018.

  21. Mohagheghi, M. and Kapat, J., Thermodynamic Optimization of Recuperated S-CO2 Brayton Cycles for Waste Heat Recovery Applications, Proc. of the 4th Int. Symp.-Supercritical CO2 Power Cycles, pp. 1-13, 2014.

  22. Moore, J., Brun, K., Evans, N., Bueno, P., and Kalra, C., Development of 1 MWe Supercritical CO2 Test Loop, Proc. of the 4th Int. Symp.-Supercritical CO2 Power Cycles, pp. 1-16, 2014.

  23. Pierobon, L., Benato, A., Scolari, E., Haglind, F., and Stoppato, A., Waste Heat Recovery Technologies for Offshore Platforms, Appl. Energy, vol. 136, pp. 228-241, 2014.

  24. Pierobon, L., Nguyen, T.V., Larsen, U., Haglind, F., and Elmegaard, B., Multi-Objective Optimization of Organic Rankine Cycles for Waste Heat Recovery: Application in an Offshore Platform, Maritime Applications, Energy, vol. 58, pp. 538-549, 2013.

  25. Pope, M.A., Thermal Hydraulic Design of a 2400 MWth Direct Supercritical Co-Cooled Fast Reactor, PhD, Massachusetts Institute of Technology, 2006.

  26. Sarkar, J., Second Law Analysis of Supercritical CO2 Recompression Brayton Cycle, Energy, vol. 34, pp. 1172-1178, 2009.

  27. Singh, D.V. and Pedersen, E., A Review of Waste Heat Recovery Technologies for Maritime Applications, Energy Convers. Manage., vol. 111, pp. 315-328, 2016.

  28. Spadacini, C., Pesatori, E., Centemeri, L., Lazzarin, N., Macchi, R., and Sanvito, M., Optimized Cycle and Turbomachinery Configuration for an Inter-Cooled, Recompressed sCO2 Cycle, Proc. of the 6th Int. Symp.-Supercritical CO2 Power Cycles, pp. 1-15, 2018.

  29. Wang, X., Yang, Y., Zheng, Y., and Dai, Y., Exergy and Exergoeconomic Analyses of a Supercritical CO2 Cycle for a Cogeneration Application, Energy, vol. 119, pp. 971-982, 2017.

  30. Wright, S.A., Davidson, C.S., and Scammell, W.O., Thermo-Economic Analysis of Four sCO2 Waste Heat Recovery Power Systems, Proc. of the 5th Int. Symp.-Supercritical CO2 Power Cycles, pp. 1-16, 2016.

  31. Wright, S.A., Radel, R.F., Conboy, T.M., and Rochau, G.E., Modeling and Experimental Results for Condensing Supercritical CO2 Power Cycles, Sandia National Laboratories, Albuquerque, New Mexico, Tech. Rep. SAND2010-8840, 2010.

  32. Xi H., Zhang H.H., and He Y.L., Experimental Study of Organic Rankine Cycle System Using Scroll Expander and Diaphragm Pump at Different Condensing Temperatures, Heat Transf. Res., vol. 49, no. 10, pp. 899-914, 2018.

  33. Yari, M. and Sirousazar, M., A Novel Recompression S-CO2 Brayton Cycle with Pre-cooler Exergy Utilization, Proc. of the Institution of Mechanical Engineers, Part A: J. Power Energy, vol. 224, pp. 931-946, 2010.

  34. Zhang, Y., Wang, S., Liu, W., Chen, Y., Wang, Y., and Li, H., Study on Key Parameters of a Supercritical Fossil-Fired Power System with CO2 Recompression and Reheat Cycles, J. Chinese Soc. Power Eng., vol. 36, no. 10, pp. 827-833, 2016.

  35. Zhen, K., Preliminary Investigation on Supercritical Carbon Dioxide Cycle Cogeneration System, Distributed Energy, vol. 2, no. 3, pp. 15-19, 2017.

REFERENZIERT VON
  1. Sun Lei, Wang Ding, Xie Yonghui, Energy, exergy and exergoeconomic analysis of two supercritical CO2 cycles for waste heat recovery of gas turbine, Applied Thermal Engineering, 196, 2021. Crossref

  2. Xie Min, Cheng Jian, Ren Xiaohan, Wang Shuo, Che Pengcheng, Zhang Chunwei, System Performance Analyses of Supercritical CO2 Brayton Cycle for Sodium-Cooled Fast Reactor, Energies, 15, 10, 2022. Crossref

Zukünftige Artikel

Effective Efficiency Analysis of Artificially Roughed Solar Air Heater MAN AZAD Energy, Exergy-Emission Performance Investigation of Heat Exchanger with Turbulators Inserts and Ternary Hybrid Nanofluid Ranjeet Rai, Vikash Kumar, Rashmi Rekha Sahoo Temperature correction method of radiation thermometer based on the nonlinear model fitted from spectral emissivity measurements of Ni-based alloy Yanfen Xu, kaihua zhang, Kun Yu, Yufang Liu Analysis of Thermal Performance in a Two-phase Thermosyphon loop based on Flow Visualization and an Image Processing Technique Avinash Jacob Balihar, Arnab Karmakar, Avinash Kumar, Smriti Minj, P L John Sangso Investigation of the Effect of Dead State Temperature on the Performance of Boron Added Fuels and Different Fuels Used in an Internal Combustion Engine. Irfan UÇKAN, Ahmet Yakın, Rasim Behçet PREDICTION OF PARAMETERS OF BOILER SUPERHEATER BASED ON TRANSFER LEARNING METHOD Shuiguang Tong, Qi Yang, Zheming Tong, Haidan Wang, Xin Chen A temperature pre-rectifier with continuous heat storage and release for waste heat recovery from periodic flue gas Hengyu Qu, Binfan Jiang, Xiangjun Liu, Dehong Xia Study on the Influence of Multi-Frequency Noise on the Combustion Characteristics of Pool Fires in Ship Engine Rooms Zhilin Yuan, Liang Wang, Jiasheng Cao, Yunfeng Yan, Jiaqi Dong, Bingxia Liu, Shuaijun Wang Experimental study on two-phase nonlinear oscillation behavior of miniaturized gravitational heat pipe Yu Fawen, Chaoyang Zhang, Tong Li, Yuhang Zhang, Wentao Zheng Flow boiling heat transfer Coefficient used for the Design of the Evaporator of a Refrigeration Machine using CO2 as Working Fluid Nadim KAROUNE, Rabah GOMRI Analyzing The Heat and Flow Characteristics In Spray Cooling By Using An Optimized Rectangular Finned Heat Sink Altug Karabey, Kenan Yakut Thermal management of lithium-ion battery packs by using corrugated channels with nano-enhanced cooling Fatih Selimefendigil, Aykut Can, Hakan Öztop Convective heat transfer inside a rotating helical pipe filled with saturated porous media Krishan Sharma, Deepu P, Subrata Kumar Preparation method and thermal performance of a new ultra-thin flexible flat plate heat pipe Xuancong Zhang, Jinwang Li, Qi Chen Influence of Temperature Gradients and Fluid Vibrations on the Thermocapillary Droplet Behavior in a Rotating Cylinder Yousuf Alhendal The Effect of Corrugation on Heat Transfer and Pressure Drop in a Solar Air Heater: A Numerical Investigation Aneeq Raheem, Waseem Siddique, Shoaib A.Warraich, Khalid Waheed, Inam Ul Haq, Muhammad Tabish Raheem, Muhammad Muneeb Yaseen Investigation of the Effect of Using Different Nanofluids on the Performance of the Organic Rankine Cycle Meltem ARISU, Tayfun MENLİK Entropy generation and heat transfer performance of cylindrical tube heat exchanger with perforated conical rings: a numerical study Anitha Sakthivel, Tiju Thomas Molecular dynamics study of the thermal transport properties in the graphene/C3N multilayer in-plane heterostructures Junjie Zhu, Jifen Wang, Xinyi Liu, Kuan Zhao Flow boiling critical heat flux in a small tube for FC-72 Yuki Otsuki, Makoto Shibahara, Qiusheng Liu, Sutopo Fitri STUDY OF FORCED ACOUSTIC OSCILLATIONS INFLUENCE ON METHANE OXIDATION PROCESS IN OXYGEN-CONTAINING FLOW OF HYDROGEN COMBUSTION PRODUCTS Anastasiya Krikunova, Konstantin Arefyev, Ilya Grishin, Maxim Abramov, Vladislav Ligostaev, Evgeniy Slivinskii, Vitaliy Krivets Examining the Synergistic Use of East-West Reflector and Coal Cinder in Trapezoidal Solar Pond through Energy Analysis VINOTH KUMAR J, AMARKARTHIK ARUNACHALAM
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain