Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2019028603
pages 1333-1350

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF THE EFFECTIVENESS OF IMPINGEMENT–FILM HYBRID COOLING

Jingyu Zhang
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China; Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing, Jiangsu 210016, China
Jieli Wei
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
Fei Wang
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
Yi Jin
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China; Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing, Jiangsu 210016, China
Xiaomin He
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China; Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing, Jiangsu 210016, China

ABSTRAKT

This paper reports on an experimental and numerical study of an impingement-film hybrid cooling technique. The effects of four important parameters on cooling effectiveness are discussed, including density flow ratio (DFR), length of inducting slab, jet-to-slab spacing, and axial location of jets. The temperatures of hot gas and coolant were 430 K and 300 K, respectively. The results show that the cooling effectiveness can be increased either by increasing the DFR or by increasing the length of the inducting slab. In the range of DFR higher than 2, reducing the jet-to-slab spacing will improve the cooling effectiveness significantly. The axial location of jets has little influence on cooling effectiveness in the present work.

REFERENZEN

  1. Chen, M., Fundamentals of Viscous Fluid Dynamics, Beijing: Higher Education Press, 2002.

  2. Dutta, R., Dewan, A., and Srinivasan, B., Comparison of Various Integration to Wall (ITW) RANS Models for Predicting Turbulent Slot Jet Impingement Heat Transfer, Int. J. Heat Mass Transf, vol. 65, no. 5, pp. 750-764, 2013. DOI: 10.1016/j. ijheatmasstransfer.2013.06.056.

  3. Fang, Z.M. and Fu, X.Q., Calculation of Thermodynamic Process with Gas Meter, Beijing: National Defense Industry Press, 1987.

  4. Fechter, S., Terzis, A., Ott, P., Weigand, B., Wolfersdorf, J., and Cochet, M., Experimental and Numerical Investigation of Narrow Impingement Cooling Channels, Int. J. Heat Mass Transf., vol. 67, pp. 1208-1219, 2013. DOI: 10.1016/j.ijheat- masstransfer.2013.09.003.

  5. Horbach, T., Schulz, A., and Bauer, H.J., Trailing Edge Film Cooling of Gas Turbine Airfoils-Effects of Ejection Lip Geometry on Film Cooling Effectiveness and Heat Transfer, Heat Transf. Res., vol. 41, no. 8, pp. 849-865, 2010. DOI: 10.1615/ HeatTransRes.v41.i8.50.

  6. Immarigeon, A. and Hassan, I., An Advanced Impingement/Film Cooling Scheme for Gas Turbines-Numerical Study, Int. J. Numer. Meth. Heat Fluid Flow, vol. 16, no. 4, pp. 470-493, 2006. DOI: 10.1108/09615530610653091.

  7. Jie, J., Hua, M.A., and Shan, J.R., Studies on the Distribution of Wall Temperature of Impingement/Film Cooling of Combustion Chambers (1) Experimentally, J. Propuls. Technol., vol. 15, pp. 14-17, 1994a.

  8. Jie, J., Hua, M.A., and Shan, J.R., Studies on the Distribution of Wall Temperature of Impingement/Film Cooling of Combustion Chambers (2) Theoretically, J. Propuls. Technol., vol. 15, pp. 34-40, 1994b.

  9. Lebedev, V.P., Lemanow, V.V., and Terekhov, V.I., Heat Transfer in a Wall Jet at High Turbulence of Concurrent Streams, Int. J. Heat Mass Transf, vol. 42, no. 4, pp. 599-612, 1999. DOI: 10.1016/s0017-9310(98)00180-x.

  10. Lee, J., Ren, Z., Ligrani, P., Lee, D.H., Fox, M.D., and Moon, H.-K., Cross-Flow Effects on Impingement Array Heat Transfer with Varying Jet-to-Target Plate Distance and Hole Spacing, Int. J. Heat Mass Transf., vol. 75, no. 75, pp. 534-544, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.040.

  11. Lienhard IV, J.H. and Lienhard V, J.H., A Heat Transfer Textbook, 4th Ed., Cambridge: Phlogiston Press, 2012. Mongia, H.C., Engineering Aspects of Complex Gas Turbine Combustion Mixers. Part I: High AT, 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition, Orinado, Florida, Report No. AIAA-2011- 0107, 2011. DOI: 10.2514/6.2011-107.

  12. Scibilia, M.F., Heat Transfer in a Forced Wall Jet on a Heated Rough Surface, J. Therm. Sci., vol. 9, pp. 85-92, 2000. DOI: 10.1007/s11630-000-0048-4.

  13. Shanley, A.I., Cooling Systems: Energy, Engineering and Applications, Hauppauge, NY: Nova Science Publishers Inc., pp. 37-68, 2011.

  14. Silieti, M., Kassab, A.J., and Divob, E., Film Cooling Effectiveness: Comparison of Adiabatic and Conjugate Heat Transfer CFD Models, Int. J. Therm. Sci, vol. 48, no. 12, pp. 2237-2248, 2009. DOI:10.1016/j.ijthermalsci.2009.04.007.

  15. Tangemann, R. and Gretler, W., The Computation of a Two-Dimensional Turbulent Wall Jet in an External Stream, J. Fluids Eng., vol. 123, pp. 154-157, 2001. DOI:10.1115/1.1331557.

  16. Tsai, Y.S., Hunt, J.C.R., Nieuwstadt, F.T.M., Westerweel, J., and Gunasekaran, B.P.N., Effect of Strong External Turbulence on a Wall Jet Boundary Layer, Flow Turbulence Combust., vol. 79, no. 2, pp. 155-174, 2007. DOI: 10.1007/s10494-007-9078-2.

  17. Wei, J., Zhang, J., Li, S., and Wang, F., Numerical Study on Impinging-Film Hybrid Cooling Effect with Different Geometries, J. Therm. Sci, vol. 92, pp. 199-216, 2015. DOI: 10.1016/j.ijthermalsci.2015.01.038.

  18. Zhang, J. and Jiao, K., Experimental Study on Impingement and Film Cooling of Gas Turbine Combustion Chamber, J. Aero-Space Power, vol. 7, pp. 375-377, 1992.

  19. Zuckerman, N. and Lior, N., Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling, Adv. Heat Transf., vol. 39, pp. 565-631, 2006. DOI: 10.1016/S0065-2717(06)39006-5.


Articles with similar content:

Numerical Study of Lobe Shape on Performance of Forced Mixing Exhaust
International Journal of Fluid Mechanics Research, Vol.40, 2013, issue 5
Gao Xin, Ruan Deng-Fang, Xie Yi
JET IMPINGEMENT IN AN UNGLAZED SOLAR AIR COLLECTOR
International Heat Transfer Conference 13, Vol.0, 2006, issue
W. Saman, Martin Belusko
NUMERICAL COOLING PERFORMANCE EVALUATION OF REVERSIBLE FAN SYSTEM IN A RAISED-FLOOR DATA CENTER
International Heat Transfer Conference 16, Vol.6, 2018, issue
Ran Wang, Qiang Yue, Zhihang Song
A Numerical Study on the Effect of the Mixing Vane Arrangement Patterns on the Heat Removal Capability inside the Fuel Assembly
Second Thermal and Fluids Engineering Conference, Vol.19, 2017, issue
Gong Hee Lee, Ae-Ju Cheong
2.13.3 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS: Single-phase convective heat transfer
Heat Exchanger Design Updates, Vol.9, 2002, issue 1&2
Xiao-Feng Peng, Björn Palm