Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2017016247
pages 119-143

HEAT AND MASS TRANSFER BOUNDARY-LAYER FLOW OVER A VERTICAL CONE THROUGH POROUS MEDIA FILLED WITH A Cu–WATER AND Ag–WATER NANOFLUID

Patakota Sudarsana Reddy
Department of Mathematics, RGM College of Engineering and Technology, Nandyal-518501, AP, India
P. Sreedevi
Department of Mathematics, Rajeev Gandi Memorial College of Engineering and Technology, Nandyal-518501, AP, India
Ali J. Chamkha
Department of Mechanical Engineering, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Kingdom of Saudi Arabia; RAK Research and Innovation Center, American University of Ras Al Khaimah, United Arab Emirates, 10021
Ali F. Al-Mudhaf
Manufacturing Engineering Department, The Public Authority for Applied Education and Training, P. O. Box 42325, Shuweikh, 70654 Kuwait

ABSTRAKT

In this paper, we have described the influence of thermal radiation and chemical reaction on boundary-layer flow, heat and mass transfer of two different nanofluids in a porous medium over a vertical cone with heat generation/absorption. In the present study, we have considered two varieties of nanofluids, namely, Cu–water and Ag–water nanofluids (with volume fraction 10% and 30%). The similarity variables are used to transform conservation equations for the nanofluid into a set of ordinary differential equations and are solved numerically subject to the boundary conditions using well-organized, extensively authorized, variational finite element method. The correctness of the present numerical code is validated with previously published data, and the results are found to be in good agreement. The sway of important nondimensional parameters of velocity, temperature, and nanoparticle concentration fields as well as the skin friction coefficient, Nusselt number, and Sherwood number are examined in detail, and the results are shown graphically and in a tabular form to illustrate the physical importance of the problem. The thermal boundary-layer thickness is raised in the entire flow region as the volume fraction of nanoparticles increased from 10% to 30%, and this rise in the temperature profiles is more in the Ag–water nanofluid than in the Cu–water nanofluid.


Articles with similar content:

HEAT AND MASS TRANSFER CHARACTERISTICS OF Al2O3−WATER AND Ag−WATER NANOFLUID THROUGH POROUS MEDIA OVER A VERTICAL CONE WITH HEAT GENERATION/ABSORPTION
Journal of Porous Media, Vol.20, 2017, issue 1
P. Sudarsana Reddy, Ali J. Chamkha
DOUBLE DIFFUSION MIXED CONVECTION IN AN AXISYMMETRIC STAGNATION FLOW OF A NANOFLUID OVER A VERTICAL CYLINDER
Computational Thermal Sciences: An International Journal, Vol.4, 2012, issue 3
M. Modather M. Abdou, Ali J. Chamkha
SORET AND DUFOUR EFFECTS ON RADIATION ABSORPTION FLUID IN THE PRESENCE OF EXPONENTIALLY VARYING TEMPERATURE AND CONCENTRATION IN A CONDUCTING FIELD
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 2
E. Keshava Reddy, M. C Raju, S. Harinath Reddy
MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER TO SISKO NANOFLUID OVER A WEDGE
International Journal of Fluid Mechanics Research, Vol.44, 2017, issue 1
Naikoti Kishan, Cherlacola Srinivas Reddy, Madhu Macha
EFFECTS OF HALL CURRENT AND HEAT RADIATION ON FLOW OF A FLUID THROUGH A POROUS MEDIUM SUBJECT TO AN EXTERNAL MAGNETIC FIELD
Special Topics & Reviews in Porous Media: An International Journal, Vol.4, 2013, issue 2
A Sinha, J. C. Misra