Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2017016243
pages 985-1005

THREE-DIMENSIONAL SIMULATION OF MASS AND HEAT TRANSFER IN DRYING UNSATURATED POROUS MEDIUM

Ramzi Rzig
Laboratoire d'Études des Systèmes Thermiques et Énergétiques, Ecole Nationale d'Ingénieurs de Monastir, Monastir 5019 Tunisie
Nidhal Ben Khedher
College of Engineering, Mechanical Engineering Department, Haïl University, Haïl City, Saudi Arabia
Sassi Ben Nasrallah
Laboratoire d'Études des Systèmes Thermiques et Énergétiques, Ecole Nationale d'Ingénieurs de Monastir, Monastir 5019 Tunisie

ABSTRAKT

The nonlinear nature of the transport equations that govern the drying process highlights in evidence the applicability of numerical simulation in this field. This work is devoted to presenting a 3D drying of facing brick that is able to explain the coupled heat and mass transfer during drying of porous media from two perspectives: the theory and industrial practice. A three-dimensional unstructured Control Volume Finite Element Method (CVFEM) has been developed in order to simulate unsteady coupled heat and mass transfer phenomena that arise during convective drying of unsaturated porous media. In order to simulate 3D complex geometries, applied here in drying facing brick, we used the free mesh generator Gmsh. Several simulation results that depict the new possibilities offered by such a tool are presented and analyzed. Indeed, thanks to this 3D tool and unlike the 2D model, we can observe for the first time an unexpected thermal field, liquid saturation and pressure distributions for facing brick at the industrial scale and hence evaluate the correct drying rate under the real conditions.

SCHLÜSSELWÖRTER: 3D drying, CVFEM, Gmsh

Articles with similar content:

EXPERIMENTAL INVESTIGATION OF THE INFLUENCE OF IRRADIATION ON THE ONSET OF NATURAL CONVECTION IN A WATER LAYER
Advances in Heat Transfer Engineering, Vol.1, 2003, issue
Romuald Fijalo, Brunon J. Grochal
SOLUTIONS FOR COUNTERCURRENT SPONTANEOUS IMBIBITION AS DERIVED BY MEANS OF A SIMILARITY APPROACH
Journal of Porous Media, Vol.18, 2015, issue 2
Geoffrey Mason, Rasoul Arabjamaloei, Douglas W. Ruth, Norman R. Morrow
CHARACTERIZATION OF METALLIC NANO-PARTICLES VIA SURFACE WAVE SCATTERING: A. THEORETICAL FRAMEWORK AND FORMULATION
ICHMT DIGITAL LIBRARY ONLINE, Vol.16, 2004, issue
Mustafa M. Aslan, M. Pinar Menguc, Gorden Videen
EXPERIMENTAL AND THEORETICAL INVESTIGATION ON THE MIXING OF REACTING LIQUIDS IN A THERMAL ARC-HEATED STEAM PLASMA
Progress in Plasma Processing of Materials, 1999, Vol.1, 1999, issue
G. Nentwig, K. Peters, B. Glocker, E. Steinmetz, H. Wilhelmi, E. Messerschmid, T.H. Caesar
A Model of the Azimuthal Capillary Effect due to Internal Porous Pipe Coating in Stratified Two-Phase Flow
Journal of Enhanced Heat Transfer, Vol.13, 2006, issue 4
M. C. De Andres, M. E. Rojas