Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018027822
pages 945-965


Zahra Ouderji Hajabdollahi
School of Mechanical Engineering, Pusan National University, Busan 609-735, Republic of Korea
Mohsen Mirzaei
School of Mechanical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
Kyung Chun Kim
School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Gumjung-ku, Busan 609-735, Korea


This research experimentally investigates the effects of adding nanoparticles with a volume fraction of 0.1% on the thermal efficiency of a flat plate solar collector at different mass flow rates. CuO/water and Al2O3/water nanofluids were studied in mixtures with different mass ratios. The results show that the nanofluids increase the efficiency of the solar collector significantly. The best mass flow rate was obtained for each nanofluid to obtain the maximum collector efficiency. Compared with water, the solar collector efficiency at the optimal rate is increased by 50%, 16%, 15%, 8%, and 2% for CuO, Al2O3, 25% CuO + 75% Al2O3, 75% CuO + 25% Al2O3, and 50% CuO + 50% Al2O3, respectively. Because of the high thermal conductivity of the CuO nanoparticles, the energy received from the collector increases. The highest energy absorption occurs in the case of CuO nanoparticles, followed by Al2O3 nanoparticles. Although the Brownian motion of Al2O3particles can be a significant feature in the heat transfer properties, the high thermal conductivity of CuO had a greater effect. Finally, the heat loss and heat absorption through the solar collector were calculated for all of the nanofluids to confirm the results.


  1. Bazdidi-Tehrani, F., Khabazipur, A., and Vasefi , S.I., Flow and Heat Transfer Analysis of TiO<sub>2</sub>/Water Nanofluid in a Ribbed Flat-Plate Solar Collector, Renew. Energy, vol. 122, pp. 406–418, 2018. DOI: 10.1016/j.renene.2018.01.056

  2. Bellos, E. and Tzivanidis, C., Performance Analysis and Optimization of an Absorption Chiller Driven by Nanofluid based Solar Flat Plate Collector, J. Clean Prod., vol. 174, pp. 256–272, 2018. DOI: 10.1016/j.jclepro.2017.10.313

  3. Duffie, J.A. and Beckman, W.A. , Solar Engineering of Thermal Processes, New York: John Wiley and Sons, 2013.

  4. Eastman, J.A., Choi, U.S., Li, S., Thompson, L.J., and Lee, S., , Enhanced Thermal Conductivity through the Development of Nanofluids, MRS Online Proc. Library Archive, vol. 457, 1996. DOI: 10.1557/PROC-457-3

  5. Esfe, M.H., Mahian, O., Hajmohammad, M.H., and Wongwises, S., Design of a Heat Exchanger Working with Organic Nanofluids Using Multi-Objective Particle Swarm Optimization Algorithm and Response Surface Method, Int. J. Heat Mass Transf., vol. 119, pp. 922–930, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.12.009

  6. Farajzadeh, E., Movahed, S., and Hosseini, R., Experimental and Numerical Investigations on the Effect of Al<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub>H<sub>2</sub>O Nanofluids on Thermal Efficiency of the Flat Plate Solar Collector, Renew. Energy, vol. 118, pp. 122–130, 2018. DOI: 10.1016/j.renene.2017.10.102

  7. Genc, A.M., Ezan, M.A., and Turgut, A., Thermal Performance of a Nanofluid-Based Flat Plate Solar Collector: A Transient Numerical Study, Appl. Therm. Eng., vol. 130, pp. 395–407, 2018. DOI: 10.1016/j.applthermaleng.2017.10.166

  8. Ghadimi, A., Saidur, R., and Metselaar, H.S.C., A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions, Int. J. Heat Mass Transf., vol. 54, pp. 4051–4068, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.04.014

  9. Hajabdollahi, F. and Premnath, K., Numerical Study of the Effect of Nanoparticles on Thermoeconomic Improvement of a Solar Flat Plate Collector, Appl. Therm. Eng., vol. 127, pp. 390–401, 2017. DOI: 10.1016/j.applthermaleng.2017.08.058

  10. Hajabdollahi, H. and Hajabdollahi, Z., Assessment of Nanoparticles in Thermoeconomic Improvement of Shell and Tube Heat Exchanger, Appl. Therm. Eng., vol. 106, pp. 827–837, 2016. DOI: 10.1016/j.applthermaleng.2016.06.061

  11. Hajabdollahi, H. and Hajabdollahi, Z., Investigating the Effect of Nanoparticle on Thermo-Economic Optimization of Fin and Tube Heat Exchanger, Proc. Inst. Mech. Eng., Part E, vol. 231, pp. 1127–1140, 2017a. DOI: 10.1177/0954408916656677

  12. Hajabdollahi, H. and Hajabdollahi, Z., Numerical Study on Impact Behavior of Nanoparticle Shapes on the Performance Improvement of Shell and Tube Heat Exchanger, Chem. Eng. Res. Des., vol. 125, pp. 449–460, 2017b. DOI: 10.1016/j. cherd.2017.05.005

  13. Hajabdollahi, H., Economic Optimization of Shell and Tube Heat Exchanger Using Nanofluid, World Academy of Science, Engineering and Technology, Int. J. Mech., Aerospace, Industry, Mech. Manufact. Eng., vol. 11, pp. 1350–1354, 2017. DOI: 1999.8/10007734

  14. Hajabdollahi, H., Investigating the Effect of Nanofluid on Optimal Design of Solar Flat Plate Collector, in Renewable Energy: Generation and Applications (ICREGA), 2018 5th International Conf., pp. 188–191, IEEE, 2018.

  15. Hajabdollahi, Z., Hajabdollahi, H., and Fu, P.F., The Effect of Using Different Types of Nanoparticles on Optimal Design of Fin and Tube Heat Exchanger, Asia-Pac. J. Chem. Eng., vol. 12, pp. 905–918, 2017. DOI: 10.1002/apj.2128

  16. Hawwash, A.A., Ali, K., Abdel Rahman, S.A., and Ookawara, S., Numerical Investigation and Experimental Verification of Performance Enhancement of Flat Plate Solar Collector Using Nanofluids, Appl. Therm. Eng., vol. 130, pp. 363–374, 2018. DOI: 10.1016/j.applthermaleng.2017.11.027

  17. Hay, J.E., Calculation of the Solar Radiation Incident on Inclined Surfaces, in Proc. First Canadian Solar Radiation Data Workshop, Toronto, Ontario, Canada, 1978.

  18. He, Q., Zeng, S., and Wang, S., Experimental Investigation on the Efficiency of Flat-Plate Solar Collectors with Nanofluids, Appl. Therm. Eng., vol. 88, pp. 165–171, 2015. DOI: 10.1016/j.applthermaleng.2014.09.053

  19. Jouybari, H.J., Saedodin, S., Zamzamian, A., Nimvari, M.E., and Wongwises, S., Effects of Porous Material and Nanoparticles on the Thermal Performance of a Flat Plate Solar Collector: An Experimental Study, Renew. Energy, vol. 114, pp. 1407– 1418, 2017. DOI: 10.1016/j.renene.2017.07.008

  20. Kiliç, F., Menlik, T., and Sözen, A., Effect of Titanium Dioxide/Water Nanofluid Use on Thermal Performance of the Flat Plate Solar Collector, Solar Energy, vol. 164, pp. 101–108, 2018. DOI: 10.1016/j.solener.2018.02.002

  21. Laukkanen, T. and Seppälä, A., Interplant Heat Exchanger Network Synthesis Using Nanofluids for Interplant Heat Exchange, Appl. Therm. Eng., vol. 135, pp. 133–144, 2018. DOI: 10.1016/j.applthermaleng.2018.01.114

  22. Mirzaei, M., Experimental Investigation of the Assessment of Al<sub>2</sub>O<sub>3</sub>–H<sub>2</sub>O and CuO–H<sub>2</sub>O Nanofluids in a Solar Water Heating System, J. Energy Storage, vol. 14, pp.71–81, 2017. DOI: 10.1016/j.est.2017.09.012

  23. Mirzaei, M., Hosseini, S.M.S., and Kashkooli, A.M.M., Assessment of Al<sub>2</sub>O<sub>3</sub> Nanoparticles for the Optimal Operation of the Flat Plate Solar Collector, Appl. Therm. Eng., vol. 134, pp. 68–77, 2018. DOI: 10.1016/j.applthermaleng.2018.01.104

  24. Moghadam, A.J. Farzane-Gord, M., Sajadi, M., and Hoseyn Zadeh, M., Effects of CuO/Water Nanofluid on the Efficiency of a Flat-Plate Solar Collector, Exp. Therm. Fluid. Sci., vol. 58, pp. 9–14, 2014. DOI: 10.1016/j.expthermfl usci.2014.06.014

  25. Murshed, S.M.S., Leong, K.C., and Yang, C., Investigations of Thermal Conductivity and Viscosity of Nanofluids, Int. J. Therm. Sci., vol. 47, pp. 560–568, 2008. DOI: 10.1016/j.ijthermalsci.2007.05.004

  26. Sarsam, W.S., Kazi, S.N., and Badarudin, A., A Review of Studies on Using Nanofluids in Flat-Plate Solar Collectors, Solar Energy, vol. 122, pp. 1245–1265, 2015. DOI: 10.1016/j.solener.2015.10.032

  27. Sharafeldin, M.A. and Gróf, G., Evacuated Tube Solar Collector Performance Using CeO<sub>2</sub>/Water Nanofluid, J. Clean Prod., vol. 185, pp. 347–356, 2018a. DOI: 10.1016/j.jclepro.2018.03.054

  28. Sharafeldin, M.A. and Gróf, G., Experimental Investigation of Flat Plate Solar Collector Using CeO<sub>2</sub>–Water Nanofluid, Energy Convers. Manage., vol. 155, pp. 32–41, 2018b. DOI: 10.1016/j.enconman.2017.10.070

  29. Sharafeldin, M.A., Gróf, G., and Mahian, O., Experimental Study on the Performance of a Flat-Plate Collector Using WO<sub>3</sub>/Water Nanofluids, Energy, vol. 141, pp. 2436–2444 2017. DOI: 10.1016/j.energy.2017.11.068

  30. Sint, N.K.C., Choudhury, I.A., Choudhury, H.H.M., and Aoyama, H., Theoretical Analysis to Determine the Efficiency of a CuO–Water Nanofluid Based-Flat Plate Solar Collector for Domestic Solar Water Heating System in Myanmar, Solar Energy, vol. 15, pp. 608–619, 2017. DOI: 10.1016/j.solener.2017.06.055

  31. Suresh, S., Venkitaraj, K.P., Selvakumar, P., and Chandrasekar, M., Synthesis of Al<sub>2</sub>O<sub>3</sub>–Cu/Water Hybrid Nanofluids Using Two Step Method and Its Thermophysical Properties, Colloids Surf. A Physicochem. Eng. Asp., vol. 388, pp. 41–48, 2011. DOI: 10.1016/j.colsurfa.2011.08.005

  32. Verma, S.K., Arun Kumar, T., and Durg Singh, C., Experimental Evaluation of Flat Plate Solar Collector Using Nanofluids, Energy Convers. Manage., vol. 134, pp. 103–115, 2017. DOI: 10.1016/j.enconman.2016.12.037

  33. Verma, S.K., Arun, K.T., Sandeep, T., and Durg, S.C., Performance Analysis of Hybrid Nanofluids in Flat Plate Solar Collector as an Advanced Working Fluid, Solar Energy, vol. 167, pp. 231–241, 2018. DOI: 10.1016/j.solener.2018.04.017

Articles with similar content:

4th Thermal and Fluids Engineering Conference, Vol.24, 2019, issue
Jeonggyun Ham, Tsogtbilegt Boldoo, Honghyun Cho
Partha S. Ghoshdastidar, Sahil Arora
Thermal Conductivity Enhancement for Aqueous Alumina Nano-Suspensions in the Presence of Surfactant
Journal of Enhanced Heat Transfer, Vol.16, 2009, issue 2
Nan Wang, Xianju Wang, Jinwei Gao, Xinfang Li, Dongsheng Zhu
International Journal of Energetic Materials and Chemical Propulsion, Vol.12, 2013, issue 6
D. R. Kshirsagar, P. P. Singh, B. Bhattacharya, Mehilal, Sudhir
Nanoscience and Technology: An International Journal, Vol.3, 2012, issue 4
S. M. Ladjevardi, P. S. Izadkhast, A. H. Kashani, Abolfazl Asnaghi