Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 1.199 5-jähriger Impact-Faktor: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v40.i8.50
pages 793-804

Validity of Solid-Liquid Bubble Interface Modeling in Partial Nucleate Boiling

M-ed El Hocine Benhamza
Laboratoire d'Analyses Industrielles et Génie des Matériaux, Guelma University
Fella Chouarfa
Laboratoire d'Analyses Industrielles et Génie des Matériaux, Guelma University, Guelma 24000, P.O. Box 401, Algeria


In this study, an identification of various models of partial nucleate boiling heat transfer is carried out in order to recognize the dependence between dominant physical parameters. There is a multitude of correlations for modeling nucleate boiling heat transfer phenomena, so the main goal of this analysis is to determine the validity of each model and at the same time to identify the more dominating nucleate boiling heat transfer physical phenomenon. This is done by comparing different models with a vast range of reliable experimental data. Comparison between various correlations and experimental data shows that the Sakashita and Kumada model gives the best results in nucleate boiling heat transfer. Results also show that the most dominating physical phenomenon in the zones of partially isolated bubbles is transient conduction, taking place mainly under the bubbles. This is in contrast with the majority of the models which consider convection as the most important mode in nucleate boiling heat transfer. An increase in the nucleation-site density leads to a decrease in the size of activation cavities as well as in a detachment diameter of vapor bubbles. The selected model can also be extrapolated and used in the case of fully developed bubble zones.


  1. Hiroto Shakashita, Experimental Data.

  2. Tien, C. L., A hydrodynamic model for nucleate boiling heat transfer.

  3. Nishikawa, K. and Yamagata, K., Engineering and equipment; boiling; bubbles; convection superheating; surface.

  4. Hara, A., The mechanics of nucleate boiling heat transfer.

  5. Pioro, I. L., Rohsenow, W., and Doerffer, S. S., Nucleate pool-boiling heat transfer.

  6. Kurihara, H. and Meyers, J. E., The effects of superheat and surface roughness on boiling coefficients.

  7. Kumada, T. and Sakashita, H., Pool boiling heat transfer-II.

  8. Kocamustafaogullari, G. and Ishii, M., Interfacial area and nucleation site density in boiling system.

  9. Iida, Y. and Kobayashi, K., Buubles; film boiling; heat transfer; mechanics; nucluate boiling; poool boiling; production vapors.

Articles with similar content:

Heat Transfer Research, Vol.50, 2019, issue 1
Jure Voglar
A Phenomenological Model of Dryout With Circumferentially Varying Heat Flux
International Heat Transfer Conference 15, Vol.52, 2014, issue
S. P. Walker, Geoffrey F. Hewitt, Jonathan Manning
Experimental Investigation and Modeling of Boiling Heat Transfer Hysteresis on Porous Surfaces
Journal of Enhanced Heat Transfer, Vol.15, 2008, issue 4
Mieczyslaw E. Poniewski, Tadeusz Michal Wojcik
Heat transfer model for pool boiling on a horizontal tube
International Heat Transfer Conference 12, Vol.40, 2002, issue
Sarit Kumar Das, Wilfried Roetzel
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Prabhakar Bhandari, Yogesh Kumar Prajapati