Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 1.199 5-jähriger Impact-Faktor: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2019026742
pages 1819-1837


Emad Hasani Malekshah
School of Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
Seyed Sadegh Seyedi
Department of Mechanical Engineering, Imam Hossein University, Tehran, Iran
Mahmoud Salari
Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran


The thermal management of batteries is a most important point to increase the efficiency of battery systems which are applicable in different devices. The present investigation focuses on high-performance lead-acid batteries with high discharge rate which produces pronounced heat flux by chemical reactions between the electrodes and electrolyte. The produced heat energy is transferred to the electrolyte from the electrodes. As a result of the high heat flux, nucleate boiling can be observed on the surfaces of the electrodes. In this context, the boiling phenomenon is simulated using the VOF model. The characteristics of the formed vapor bubbles, heat transfer parameter, and fluid flow under the influence of different aspect ratios of the enclosures are investigated comprehensively. In this research, we are going to find the optimal aspect ratio to prevent the creation of a thermal insulation area in the constant heat flux between the walls by merging vapor bubbles.


  1. Alizadehdakhel, A., Rahimi, M., and Alsairafi, A.A., CFD Modeling of Flow and Heat Transfer in a Thermosyphon, Int. Commun. Heat Mass Transf., vol. 37, no. 3, pp. 312-318, 2010.

  2. Aminfar, H., Mohammadpourfard, M., and Sahraro, M., Numerical Simulation of Nucleate Pool Boiling on the Horizontal Surface for Nano-Fluid Using Wall Heat Flux Partitioning Method, Computers Fluids, vol. 66, pp. 29-38, 2012.

  3. Bang, I.C. and Chang, S.H., Boiling Heat Transfer Performance and Phenomena of Al2O3-Water Nano-Fluids from a Plain Surface in a Pool, Int. J. Heat Mass Transf., vol. 48, pp. 2407-2419, 2005.

  4. Bowring, R.W., Physical Model, Based on Bubble Detachment, and Calculation of Steam Voidage in the Subcooled Region of a Heated Channel, Norway, Institutt for Atomenergi, OECD Halden Reactor Project, 1962.

  5. Brackbill, J., Kothe, D.B., and Zemach, C., A Continuum Method for Modeling Surface Tension, J. Comput. Phys., vol. 100, pp. 335-354, 1992.

  6. Ciloglu, D. and Bolukbasi, A., A Comprehensive Review on Pool Boiling of Nanofluids, Appl. Therm. Eng., vol. 84, pp. 45-63, 2015.

  7. Cole, R. and Shulman, H., Bubble Departure Diameters at Subatmospheric Pressures, Chem. Eng. Prog. Sympos. Ser., vol. 62, pp. 6-16, 1966.

  8. Cole, R., A Photographic Study of Pool Boiling in the Region of the Critical Heat Flux, AIChE J., vol. 6, pp. 533-538, 1960.

  9. Cole, R., Bubble Frequencies and Departure Volumes at Subatmospheric Pressures, AIChE J., vol. 13, pp. 779-783, 1967.

  10. Das, S.K., Putra, N., and Roetzel, W., Pool Boiling Characteristics of Nano-Fluids, Int. J. Heat Mass Transf., vol. 46, pp. 851-862, 2003.

  11. Dhir, V.K., Numerical Simulations of Pool-Boiling Heat Transfer, AIChE J, vol. 47, pp. 813-834, 2001.

  12. Fazel, S.A.A. and Shafaee, S.B., Bubble Dynamics for Nucleate Pool Boiling of Electrolyte Solutions, J. Heat Transf., vol. 132, pp. 1-7, 2010.

  13. Gerardi, C., Buongiorno, J., Hu, L.-W., and McKrell, T., Infrared Thermometry Study of Nanofluid Pool Boiling Phenomena, Nanoscale Res. Lett., vol. 6, pp. 1-17, 2011.

  14. Golorin, V., Kol'chugin, B., and Zakharova, E., Investigation of the Mechanism of Nucleate Boiling of Ethyl Alcohol and Benzene by Means of High-Speed Motion-Picture Photography, Heat Transf.-Sov. Res., vol. 10, pp. 79-98, 1978.

  15. Hamzekhani, S., Falahieh, M.M., and Akbari, A., Bubble Departure Diameter in Nucleate Pool Boiling at Saturation: Pure Liquids and Binary Mixtures, Int. J. Refrig., vol. 46, pp. 50-58, 2014.

  16. I vey, H., Relationships between Bubble Frequency, Departure Diameter and Rise Velocity in Nucleate Boiling, Int. J. Heat Mass Transf., vol. 10, pp. 1023-1040, 1967.

  17. Jakob, M. and Fritz, W., Versuche uber den Verdampfungsvorgang, Forschung im Ingenieurwesen, vol. 2, pp. 435-447, 1931.

  18. Jensen, M.K. and Memmel, G.J., Evaluation of Bubble Departure Diameter Correlations, Proc. of the Eighth Int. Heat Transfer Conf, vol. 4, pp. 1907-1912, 1986.

  19. Kim, J. and Kim, M.H., On the Departure Behaviors of Bubble at Nucleate Pool Boiling, Int. J. Multiphase Flow, vol. 32, pp. 1269-1286, 2006.

  20. Kim, J., You, S., and Pak, J., Effects of Heater Size and Working Fluids on Nucleate Boiling Heat Transfer, Int. J. Heat Mass Transf., vol. 49, pp. 122-131, 2006.

  21. Kim, S.J., Bang, I.C., Buongiorno, J., and Hu, L., Surface Wettability Change during Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux, Int. J. Heat Mass Transf., vol. 50, pp. 4105-4116, 2007.

  22. Ma, X., Cheng, P., Gong, S., and Quan, X., Mesoscale Simulations of Saturated Pool Boiling Heat Transfer under Microgravity Conditions, Int. J. Heat Mass Transf.., vol. 114, pp. 453-457, 2007.

  23. McFadden, P. and Grassmann, P., The Relation between Bubble Frequency and Diameter during Nucleate Pool Boiling, Int. J. Heat Mass Transf., vol. 5, pp. 169-173, 1962.

  24. Mikic, B., Rohsenow, W., and Griffith, P., On Bubble Growth Rates, Int. J. Heat Mass Transf., vol. 13, pp. 657-666, 1970.

  25. Peebles, F.N. and Garber, H.J., Studies on the Motion of Gas Bubbles in Liquids, Chem. Eng. Prog., vol. 49, pp. 88-97, 1953.

  26. Purusothaman, A., Investigation of Natural Convection Heat Transfer Performance of the QFN-PCB Electronic Module by Using Nanofluid for Power Electronics Cooling Applications, Adv. Powder Technol., vol. 29, pp. 996-1004, 2018.

  27. Purusothaman, A., Bairi, A., and Nithyadevi, N., 3D Natural Convection on a Horizontal and Vertical Thermally Active Plate in a Closed Cubical Cavity, Int. J. Numer. Meth. Heat Fluid Flow, vol. 26, pp. 2528-2542, 2016a.

  28. Purusothaman, A., Divya, V., Nithyadevi, N., and Oztop, H., An Analysis on Free Convection Cooling of a 3 x 3 Heater Array in Rectangular Enclosure using Cu-EG-Water Nanofluid, J. Appl. FluidMech., vol. 9, no. 6, pp. 3147-3157, 2016b.

  29. Purusothaman, A., Nithyadevi, N., Oztop, H., Divya, V., and Al-Salem, K., Three-Dimensional Numerical Analysis of Natural Convection Cooling with an Array of Discrete Heaters Embedded in Nanofluid Filled Enclosure, Adv. Powder Technol., vol. 27, pp. 268-280, 2016c.

  30. Purusothaman, A., Oztop, H., Nithyadevi, N., and Abu-Hamdeh, N.H., 3D Natural Convection in a Cubical Cavity with a Thermally Active Heater under the Presence of an External Magnetic Field, Computers Fluids, vol. 128, pp. 30-40, 2016d.

  31. Ruckenstein, E., A Physical Model for Nucleate Boiling Heat Transfer, Int. J. Heat Mass Transf., vol. 7, pp. 191-198, 1964.

  32. Sarker, D., Franz, R., Ding, W., and Hampel, U., Single Bubble Dynamics during Subcooled Nucleate Boiling on a Vertical Heater Surface: An Experimental Analysis of the Effects of Surface Characteristics, Int. J. Heat Mass Transf., vol. 109, pp. 907-921, 2017.

  33. Sathyabhama, A. and Dinesh, A., Augmentation of Heat Transfer Coefficient in Pool Boiling Using Compound Enhancement Techniques, Appl. Therm. Eng., vol. 119, pp. 176-188, 2017.

  34. Souza, R., Passos, J., and Cardoso, E., Influence of Nanoparticle Size and Gap Size on Nucleate Boiling Using HFE7100, Exp. Therm. Fluid Sci., vol. 59, pp. 195-201, 2014.

  35. Welch, S.W. and Wilson, J., A Volume of Fluid Based Method for Fluid Flows with Phase Change, J. Comput. Phys., vol. 160, pp. 662-682, 2000.

  36. Zeng , L., Klausner, J., Bernhard, D., and Mei, R., A Unified Model for the Prediction of Bubble Detachment Diameters in Boiling Systems-II. Flow Boiling, Int. J. Heat Mass Transf.., vol. 36, pp. 2271-2279, 1993.

  37. Zuber, N., Nucleate Boiling. The Region of Isolated Bubbles and the Similarity with Natural Convection, Int. J. Heat Mass Transf., vol. 6, pp. 53-78, 1963.

Articles with similar content:

Multiscale Modeling Approaches of Transport Phenomena in Fuel Cells
International Heat Transfer Conference 15, Vol.1, 2014, issue
Bengt Sunden
International Heat Transfer Conference 4, Vol.29, 1970, issue
V. A. Grigoriev, A. S. Dudkevich
The Effect of Augmented Surfaces on Two-Phase Flow Instabilities in a Horizontal System
Journal of Enhanced Heat Transfer, Vol.2, 1995, issue 4
Omer Comakli, F. Widmann, Sadik Kakac, Y. Ding, Claudia O. Gavrilescu
Non-Equilibrium Discharging Flow From Safety Valves
International Heat Transfer Conference 15, Vol.52, 2014, issue
Yoshihiko Kitagawa, Masahiro Osakabe, Sachiyo Horiki
International Heat Transfer Conference 10, Vol.20, 1994, issue
V.V. Wadekar, D. B. R. Kenning