Abo Bibliothek: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 0743-4863

ISSN Online: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Dendrimers for Therapeutic Delivery: Compositions, Characterizations, and Current Status

Volumen 36, Ausgabe 4, 2019, pp. 277-304
DOI: 10.1615/CritRevTherDrugCarrierSyst.2018025749
Get accessGet access

ABSTRAKT

Dendrimers, commonly referred to as arborols, offer tremendous opportunities for drug delivery, diagnostics, and treatment applications. This may be attributed to the characteristic features of their three architectural components: core, branches, and terminal groups. These components provide vast flexibility to designers. They act as highly moldable platforms that can be modified to suit the needs of application designers. Effectively, the type, length, and molecular weight of the core, branches and terminal groups may be customized to achieve desired characteristics and satisfy the demands of numerous applications. These perfectly designed multifunctional structures are reviewed in the current paper, focusing on their complex archetypical design for interphase applications; novel drug delivery applications, especially oral, ocular, pulmonary, transdermal; targeted, and controlled-release; and diagnosis and treatment of diseases like cancer, diabetes, and autoimmune disorders.

REFERENZEN
  1. Hirao A, Yoo H-S. Dendrimer-like star-branched polymers: novel structurally well-defined hyper-branched polymers. Polymer J. 2011;43:2.

  2. Lu Y, Nemoto T, Tosaka M, Yamago S. Synthesis of structurally controlled hyperbranched polymers using a monomer having hierarchical reactivity. Nat Commun. 2017 Nov 30;8(1):1863. DOI: 101038/s41467-017-01838-0.

  3. Bosman AW, Janssen HM, Meijer EW. About dendrimers: structure, physical properties, and applications. Chem Rev. 1999 Jul 14;99(7):1665-88.

  4. Wooley KL, Hawker CJ, Frechet JM. Nanotechnology in water industry. J Pure Appl Chem. 1994;23:1627-45.

  5. Hawker CJ, Farrington PJ, Mackay ME, Wooley KL, Frechet JMJ. Molecular ball bearings: the unusual melt viscosity behavior of dendritic macromolecules. J Am Chem Soc. 1995;117(15): 4409-10.

  6. Dykes GM. Dendrimers: a review of their appeal and applications. J Chem Technol Biotechnol. 2001;76(9):903-18.

  7. Appelhans D, Klajnert-Maculewicz B, Janaszewska A, Lazniewska J, Voit B. Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications. Chem Soc Rev. 2015;44(12):3968-96.

  8. Rodrigues DB, Oliveira JM, Santos TC, Reis RL. Dendrimers: breaking the paradigm of current musculoskeletal autoimmune therapies. J Tissue Eng Regen Med. 2017 Oct 19.

  9. Otto DP, de Villiers MM. Poly(amidoamine) dendrimers as a pharmaceutical excipient. Are we there yet? J Pharm Sci. 2017;107(1):75-83.

  10. McMahon MT, Bulte JWM. Two decades of dendrimers as versatile MRI agents: a tale with and without metals. WIREs: Nanomed Nanobiotechnol. 2017;10(3):E1496.

  11. Elkin I, Banquy X, Barrett CJ, Hildgen P. Non-covalent formulation of active principles with dendrimers: current state-of-the-art and prospects for further development. J Control Release. 2017;264:288-305.

  12. Fruchon S, Poupot R. Pro-inflammatory versus anti-inflammatory effects of dendrimers: the two faces of immuno-modulatory nanoparticles. Nanomat (Basel). 2017;7(9):E251.

  13. Zhao L, Zhu M, Li Y, Xing Y, Zhao J. Radiolabeled dendrimers for nuclear medicine applications. Molecules. 2017 Aug 25;22(9): E1350.

  14. Scott RWJ, Wilson OM, Crooks RM. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B. 2005;109(2):692-704.

  15. Nagpal K., Mohan A., Thakur SPK. Dendritic platforms for biomimicry and biotechnological applications. Artificial Cells, Nanomed, Biotechnol. 2018: 1-15. DOI: 10.1080/21691401.2018.

  16. Frechet JM. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science. 1994 Mar 25;263(5154):1710-5.

  17. Hegde AR, Rewatkar PV, Manikkath J, Tupally K, Parekh HS, Mutalik S. Peptide dendrimer-conjugates of ketoprofen: synthesis and ex vivo and in vivo evaluations of passive diffusion, sonophoresis and iontophoresis for skin delivery. Eur J Pharm Sci. 2017 May 01;102:237-49.

  18. Xu L, Zhang H, Wu Y. Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem Neurosci. 2014;5(1):2-13.

  19. El-Sayed M, Rhodes CA, Ginski M, Ghandehari H. Transport mechanism(s) of poly (amidoamine) dendrimers across Caco-2 cell monolayers. Int J Pharm. 2003 Oct 20;265(1-2):151-7.

  20. Jevprasesphant R, Penny J, Attwood D, D'Emanuele A. Transport of dendrimer nanocarriers through epithelial cells via the transcellular route. J Control Release. 2004 Jun 18;97(2):259-67.

  21. Wiwattanapatapee R, Carreno-Gomez B, Malik N, Duncan R. PAMAM dendrimers as a potential oral drug delivery system: uptake by everted rat intestinal sacs in-vitro. J Pharm and Pharmacol. 1998;50(S9). doi: https://doi.org/10.1111/j.2042-7158.1998.tb02299.x.

  22. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release. 2000 Mar 01;65(1-2):133-48.

  23. Roberts JC, Bhalgat MK, Zera RT. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J Biomed Mater Res. 1996 Jan;30(1):53-65.

  24. Jevprasesphant R, Penny J, Attwood D, McKeown NB, D'Emanuele A. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm Res. 2003 0ct;20(10):1543-50.

  25. Najlah M, Freeman S, Attwood D, D'Emanuele A. In vitro evaluation of dendrimer prodrugs for oral drug delivery. Int J Pharm. 2007 May 04;336(1):183-90.

  26. D'Emanuele A, Jevprasesphant R, Penny J, Attwood D. The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J Control Release. 2004 Mar 24;95(3):447-53.

  27. Mansuri S, Kesharwani P, Tekade RK, Jain NK. Lyophilized mucoadhesive-dendrimer enclosed matrix tablet for extended oral delivery of albendazole. Eur J Pharm Biopharm. 2016 May;102:202-13.

  28. Nagpal K, Singh SK, Mishra DN. Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull (Tokyo). 2010 Nov;58(11):1423-30.

  29. Nagpal K, Singh SK, Mishra DN. Nanoparticle mediated brain targeted delivery of gallic acid: in vivo behavioral and biochemical studies for improved antioxidant and antidepressant-like activity. Drug Deliv. 2012 Nov;19(8):378-91.

  30. Nagpal K, Singh SK, Mishra D. Influence of the formulation on the maximum tolerated doses of brain targeted nanoparticles of gallic acid by oral administration in Wistar rats. J Pharm Pharmacol. 2013 Dec;65(12):1757-64.

  31. Nagpal K, Singh SK, Mishra DN. Drug targeting to brain: a systematic approach to study the factors, parameters and approaches for prediction of permeability of drugs across BBB. Expert Opin Drug Deliv. 2013 Jul;10(7):927-55.

  32. Nagpal K, Singh SK, Mishra DN. Minocycline encapsulated chitosan nanoparticles for central antinociceptive activity. Int J Biol Macromol. 2015 Jan;72:131-5.

  33. Tolia GT, Choi HH. The role of dendrimers in topical drug delivery. Pharm Technol. 2008;32:88-98.

  34. Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release. 2005 Jan 20;102(1):23-38.

  35. Spataro G, Malecaze F, Turrin CO, Soler V, Duhayon C, Elena PP, Majoral JP, Caminade AM. Designing dendrimers for ocular drug delivery. Eur J Med Chem. 2010 Jan;45(1):326-34.

  36. Holden CA, Tyagi P, Thakur A, Kadam R, Jadhav G, Kompella UB, Yang H. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomed. 2012 Jul;8(5):776-83.

  37. Yavuz B, Bozdag Pehlivan S, Sumer Bolu B, Nomak Sanyal R, Vural I, Unlu N. Dexamethasone-PAMAM dendrimer conjugates for retinal delivery: preparation, characterization and in vivo evaluation. J Pharm Pharmacol. 2016 Aug;68(8):1010-20.

  38. Guo Y, Johnson MA, Mehrabian Z, Mishra MK, Kannan R, Miller NR, Bernstein SL. Dendrimers target the ischemic lesion in rodent and primate models of nonarteritic anterior ischemic optic neuropathy. PLoS One. 2016 Apr 29;11(4):e0154437.

  39. Lancina MG 3rd, Singh S, Kompella UB, Husain S, Yang H. Fast dissolving dendrimer nanofiber mats as alternative to eye drops for more efficient antiglaucoma drug delivery. ACS Biomater Sci Eng. 2017 Aug 14;3(8):1861-1868.

  40. Patil JS, Sarasija S. Pulmonary drug delivery strategies: a concise, systematic review. Lung India. 2012 Jan;29(1):44-9.41.

  41. Labiris NR, Dolovich MB. Pulmonary drug delivery. I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003 Dec;56(6):588-99.

  42. Bai S, Thomas C, Ahsan F. Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin. J Pharm Sci. 2007;96(8):2090-106.

  43. Zhong Q, da Rocha SR. Poly(amidoamine) dendrimer-doxorubicin conjugates: in vitro characteristics and pseudosolution formulation in pressurized metered-dose inhalers. Mol Pharm. 2016 Mar 07;13(3):1058-72.

  44. Bielski E, Zhong Q, Mirza H, Brown M, Molla A, Carvajal T, da Rocha SRP. TPP-dendrimer nanocarriers for siRNA delivery to the pulmonary epithelium and their dry powder and metered-dose inhaler formulations. Int J Pharm. 2017 Jul 15;527(1-2):171-183.

  45. Chauhan AS, Sridevi S, Chalasani KB, Jain AK, Jain SK, Jain NK, Diwan PV. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J Control Release. 2003 Jul 31;90(3):335.

  46. Cheng Y, Man N, Xu T, Fu R, Wang X, Wen L. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J Pharm Sci. 2007 Mar;96(3): 595-602.

  47. Hu Q, Ding B, Yan X, Peng L, Duan J, Yang S, Cheng L, Chen D. Polyethylene glycol modified PAMAM dendrimer delivery of kartogenin to induce chondrogenic differentiation of mesenchymal stem cells. Nanomed. 2017 Oct;13(7):2189-98.

  48. Shetty PK, Manikkath J, Tupally K, Kokil G, Hegde AR, Raut SY, Parekh HS, Mutalik S. Skin delivery of EGCG and silibinin: potential of peptide dendrimers for enhanced skin permeation and deposition. AAPS PharmSciTech. 2017 Aug;18(6):2346-57.

  49. Pentek T, Newenhouse E, O'Brien B, Chauhan AS. Development of a topical resveratrol formulation for commercial applications using dendrimer nanotechnology. Molecules. 2017 Jan 14;22(1):E137.

  50. Choi Y, Thomas T, Kotlyar A, Islam MT, Baker JR Jr. Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting. Chem Biol. 2005 Jan;12(1):35-43.

  51. Thomas TP, Patri AK, Myc A, Myaing MT, Ye JY, Norris TB, Baker JR. In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromol. 2004;5(6):2269-74.

  52. Li MH, Choi SK, Thomas TP, Desai A, Lee KH, Kotlyar A, Banaszak Holl MM, Baker JR Jr. Dendrimer-based multivalent methotrexates as dual acting nanoconjugates for cancer cell targeting. Eur J Med Chem. 2012 Jan;47(1):560-72.

  53. Mekuria SL, Debele TA, Chou HY, Tsai HC. IL-6 antibody and RGD peptide conjugated poly(amidoamine) dendrimer for targeted drug delivery of HeLa Cells. J Phys Chem B. 2016 Jan 14;120(1):123-30.

  54. Fu F, Wu Y, Zhu J, Wen S, Shen M, Shi X. Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: investigating the role played by PEG spacer. ACS Appl Mater Interf. 2014 Sep 24;6(18):16416-25.

  55. Patel HK, Gajbhiye V, Kesharwani P, Jain NK. Ligand anchored poly(propyleneimine) dendrimers for brain targeting: comparative in vitro and in vivo assessment. J Colloid Interf Sci. 2016 Nov 15;482:142-50.

  56. Wang T, Zhang Y, Wei L, Teng YG, Honda T, Ojima I. Design, synthesis, and biological evaluations of asymmetric bow-tie PAMAM dendrimer-based conjugates for tumor-targeted drug delivery. ACS Omega. 2018 Apr 30;3(4):3717-3736.

  57. Urquhart J. Controlled drug delivery: therapeutic and pharmacological aspects. J Internal Med. 2000;248(5):357-76.

  58. Asthana A, Chauhan AS, Diwan PV, Jain NK. Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled site-specific delivery of acidic anti-inflammatory active ingredient. AAPS Pharm Sci Tech. 2005 Oct 27;6(3):E536-42.

  59. Choi SK, Verma M, Silpe J, Moody RE, Tang K, Hanson JJ, Baker JR Jr. A photochemical approach for controlled drug release in targeted drug delivery. Bioorg Med Chem. 2012 Feb 01;20(3):1281-90.

  60. Taghdisi SM, Danesh NM, Ramezani M, Lavaee P, Jalalian SH, Robati RY, Abnous K. Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo. Eur J Pharm Biopharm. 2016 May;102:152-8.

  61. Hu J, Su Y, Zhang H, Xu T, Cheng Y. Design of interior-functionalized fully acetylated dendrimers for anticancer drug delivery. Biomat. 2011 Dec;32(36):9950-9.

  62. Kobayashi H, Choyke P, inventors; US Department of Health and Human Services (HHS), assignee. Methods for tumor treatment using dendrimer conjugates. United States Patent US20060204443A1. 2006 Sept 14.

  63. Tekade RK, Kumar PV, Jain NK. Dendrimers in oncology: an expanding horizon. Chem Rev. 2009 Jan;109(1):49-87.

  64. Pes L, Kim Y, Tung CH. Bidentate iminodiacetate modified dendrimer for bone imaging. Bioorg Med Chem Lett. 2017 Mar 01;27(5):1252-5.

  65. Haensler J, Szoka FC. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconj Chem. 1993;4(5):372-9.

  66. Hawker CJ, Wooley KL, Frechet JMJ. Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. J Chem Soc, Perkin Trans 1. 1993(12):1287-97.

  67. Jansen JF, de Brabander-van den Berg EM, Meijer EW. Encapsulation of guest molecules into a dendritic box. Science. 1994 Nov 18;266(5188):1226-9.

  68. Kojima C, Kono K, Maruyama K, Takagishi T. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem. 2000 Nov-Dec;11(6):910-7.

  69. Malik N, Evagorou EG, Duncan R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs. 1999 Sep;10(8):767-76.

  70. Malik N, Duncan R, Tomalia D, Esfand R, inventors; AVC Holdings Inc., Dendritic NanoTechnologies Inc., assignee. Antineoplastic-dendritic polymer drug delivery system. United States Patent US20060039891A1. 2006 Feb 23.

  71. Dichwalkar T, Bapat S, Pancholi P, Yellepeddi VK, Sehdev V. Abstract 2200: Omega-3 fatty acid conjugated paclitaxel dendrimers exhibit enhanced anticancer activity in various preclinical models of gastrointestinal cancers. Cancer Res. 2016;76(14 Suppl):2200.

  72. Karolczak K, Rozalska S, Wieczorek M, Labieniec-Watala M, Watala C. Poly(amido)amine dendrimers generation 4.0 (PAMAM G4) reduce blood hyperglycaemia and restore impaired blood-brain barrier permeability in streptozotocin diabetes in rats. Int J Pharm. 2012 Oct 15;436(1-2):508-18.

  73. Labieniec-Watala M, Przygodzki T, Sebekova K, Watala C. Can metabolic impairments in experimental diabetes be cured with poly(amido)amine (PAMAM) G4 dendrimers? In the search for minimizing of the adverse effects of PAMAM administration. Int J Pharm. 2014 Apr 10;464(1-2):152-67.

  74. Deng X, Li X, Chen W, Zhao T, Huang W, Qian H. Design, synthesis and biological evaluation of peptide dendrimers with wound healing promoting activity. Med Chem Res. 2017 March 01;26(3): 580-6.

  75. Anwaier G, Chen C, Cao Y, Qi R. A review of molecular imaging of atherosclerosis and the potential application of dendrimer in imaging of plaque. Int J Nanomed. 2017;12:7681-93.

  76. Gras R, Relloso M, Garcia MI, de la Mata FJ, Gomez R, Lopez-Fernandez LA, Munoz-Fernandez MA. The inhibition of Th17 immune response in vitro and in vivo by the carbosilane dendrimer 2G-NN16. Biomat. 2012 May;33(15):4002-9.

  77. Hayder M, Varilh M, Turrin CO, Saoudi A, Caminade AM, Poupot R, Liblau RS. Phosphorus-based dendrimer ABP treats neuroinflammation by promoting IL-10-producing CD4(+) T cells. Biomacromol. 2015 Nov 09;16(11):3425-33.

  78. Holl EK, Shumansky KL, Borst LB, Burnette AD, Sample CJ, Ramsburg EA, Sullenger BA. Scavenging nucleic acid debris to combat autoimmunity and infectious disease. Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9728-33.

  79. Lei J, Rosenzweig JM, Mishra MK, Alshehri W, Brancusi F, McLane M, Almalki A, Bahabry R, Arif H, Rozzah R, Alyousif G, Shabi Y, Alhehaily N, Zhong W, Facciabene A, Kannan S, Kannan RM, Burd I. Maternal dendrimer-based therapy for inflammation-induced preterm birth and perinatal brain injury. Sci Rep. 2017; 7(1):6106.

  80. Chanphai P, Tajmir-Riahi HA. Characterization of folic acid-PAMAM conjugates: drug loading efficacy and dendrimer morphology. J Biomol Struct Dyn. 2018;36(7):1918-24.

  81. Dabrzalska M, Benseny-Cases N, Barnadas-Rodriguez R, Mignani S, Zablocka M, Majoral JP, Bryszewska M, Klajnert-Maculewicz B, Cladera J. Fourier transform infrared spectroscopy (FTIR) characterization of the interaction of anticancer photosensitizers with dendrimers. Anal Bioanal Chem. 2016 Jan;408(2):535-44.

  82. Do Carmo DR, Fernandes DS. Hybrid graphene oxide/DAB-Am-16 dendrimer: preparation, characterization chemical reactivity and their electrocatalytic detection of l-Dopamine. Solid State Sci. 2017;71(Suppl C):33-41.

  83. Raut S, Enciso AE, Pavan GM, Lee C, Yepremyan A, Tomalia DA, Simanek EE, Gryczynski Z. Intrinsic fluorescence of triazine dendrimers provides a new approach to study dendrimer structure and conformational dynamics. J Phys Chem C. 2017;121(12):6946-54.

  84. Golshan M, Salami-Kalajahi M, Mirshekarpour M, Roghani-Mamaqani H, Mohammadi M. Synthesis and characterization of poly(propylene imine)-dendrimer-grafted gold nanoparticles as nanocarriers of doxorubicin. Colloids Surf B Biointerf. 2017 Jul 01;155:257-65.

  85. Bhattacharya P, Nandasiri MI, Lv D, Schwarz AM, Darsell JT, Henderson WA, Tomalia DA, Liu J, Zhang J-G, Xiao J. Polyamidoamine dendrimer-based binders for high-loading lithium-sulfur battery cathodes. Nano Energy. 2016;19(Suppl C):176-86.

  86. JR, Jayasekara PS, Jacobson KA. Characterization of polyamidoamino (PAMAM) dendrimers using in-line reversed phase LC electrospray ionization mass spectrometry. Anal Meth. 2016;8(2):263-9.

  87. Liu X, Gregurec D, Irigoyen J, Martinez A, Moya S, Ciganda R, Hermange P, Ruiz J, Astruc D. Precise localization of metal nanoparticles in dendrimer nanosnakes or inner periphery and consequences in catalysis. Nat Commun. 2016 Oct 19;7:13152.

  88. Beraa A, Hajjaji M, Laurent RG, Caminade A-M. Dendrimer-containing organoclays: characterisation and interaction with methylene blue. Appl Clay Sci. 2017;136(Suppl C):142-51.

  89. Villena C, Losada J, Alonso B, Casado CM, Armada MP. easy preparation of electrode surfaces with dispersed size-controlled Au nanoparticles by electrodeposited PPI-dendrimers as templates. J Electrochem Soc. 2017;164:H396-H406.

  90. Shtykova EV, Feigin LA, Volkov VV, Malakhova YN, Streltsov DR, Buzin AI, Chvalun SN, Katarzhanova EY, Ignatieva GM, Muzafarov AM. Small-angle X-ray scattering study of polymer structure: carbosilane dendrimers in hexane solution. Crystallog Rep. 2016 Sep 01;61(5):815-25.

  91. Yuan G, Wang X, Wu D, Hammouda B. Structural analysis of dendrimers based on polyhedral oligomeric silsesquioxane and their assemblies in solution by small-angle neutron scattering: fits to a modified two correlation lengths model. Polymer. 2016;100(Suppl C):119-25.

  92. Mohammadpour R, Safarian S, Buckway B, Ghandehari H. Comparative endocytosis mechanisms and anticancer effect of HPMA copolymer- and PAMAM dendrimer-MTCP conjugates for photody- namic therapy. Macromol Biosci. 2017 Apr;17(4). doi: 10.1002/mabi.201600333.

  93. Perlstein M, Ottaviani MF, Aserin A, Garti N. Structural effects on cosolubilization of dendrimer and propofol in water dilutable microemulsions as delivery vehicle. Colloids Surf A. 2016;497(Suppl C):257-64.

  94. Dung TH, Le TD, Eom KD, Kim SJ, Yoo H. Preparation of pluronic grafted dendritic alpha,epsilon-poly(L-lysine)s and characterization as a delivery adjuvant of antisense oligonucleotide. J Nanosci Nanotechnol. 2016 Feb;16(2):1370-4.

  95. Castaing V, Alvarez-Martos I, Ferapontova EE. Wiring of glucose oxidizing flavin adenine dinucleotide-dependent enzymes by methylene blue-modified third generation poly(amidoamine) dendrimers attached to spectroscopic graphite electrodes. Electrochimica Acta. 2016;197(Suppl C):263-72.

  96. Folgado E, Guerre M, Bijani C, Ladmiral V, Caminade A-M, Ameduri B, Ouali A. Well-defined poly(vinylidene fluoride) (PVDF) based-dendrimers synthesized by click chemistry: enhanced crystallinity of PVDF and increased hydrophobicity of PVDF films. Polymer Chem. 2016;7(36):5625-9.

  97. Wen Z, Jincheng W. Preparation and characterization of a cyclophosphamide-core PAMAM dendritic montmorillonite. Silicon. 2017 Jan 05.

  98. Turkfu HN, Ocak H, Gurbuz MU, Qakar F, Bilgin-Eran B, Tulu M. A study of dendritic ionic liquid crystals: using (S)-4-citronellyloxybenzoic acid and polypropylene imine dendrimers. J Mol Liq. 2016;216(Suppl C):209-15.

  99. Srivastava AK, Kim D-Y, Kim J, Jeong J, Lee J-H, Jeong K-U, Singh V. Dielectric relaxation in a novel tapered chiral photochromatic liquid crystalline dendrimer. Liquid Crystals. 2016;43(7):920-7.

  100. Amirova A, Rodchenko S, Makhmudova Z, Cherkaev G, Milenin S, Tatarinova E, Kurlykin M, Tenkovtsev A, Filippov AC. Synthesis, characterization, and investigation of thermosensitive star-shaped poly(2-isopropyl-2-oxazolines) based on carbosilane dendrimers. Macromol Chem Phys. 2017;218(4):1600387.

  101. Erturk A, Gurbuz M, Tulu M. New-generation Jeffamine D230 core amine, TRIS and carboxyl-terminated PAMAM dendrimers: synthesis, characterization and the solubility application for a model NSAID drug buprofen. Marmara Pharm J. 2017;21:385-99.

  102. Dayyani N, Ramazani A, Khoee S, Shafiee A. Synthesis and characterization of the first generation of polyaminoester dendrimer-grafted magnetite nanoparticles from 3-aminopropyltriethoxysilane (APTES) via the convergent approach. Silicon. 2017;10(2):595-601.

  103. Bodewein L, Schmelter F, Di Fiore S, Hollert H, Fischer R, Fenske M. Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines. Toxicol Appl Pharmacol. 2016;305(Suppl C):83-92.

  104. Franiak-Pietryga I, Ziolkowska E, Ziemba B, Appelhans D, Maciejewski H, Voit B, Kaczmarek A, Robak T, Klajnert-Maculewicz B, Cebula-Obrzut B, Smolewski P, Borowiec M, Bryszewska M. Glycodendrimer PPI as a potential drug in chronic lymphocytic leukaemia. The influence of glycodendrimer on apoptosis in in vitro B-CLL cells defined by microarrays. Anticancer Agents Med Chem. 2017;17(1):102-14.

REFERENZIERT VON
  1. Ghaffari Maryam, Moztarzadeh Fatholah, Mollazadeh-Bajestani Saeid, Drug delivery nanosystems for musculoskeletal regeneration, in Nanoengineering in Musculoskeletal Regeneration, 2020. Crossref

  2. Prajapati Shiv Kumar, Jain Aakanchha, Dendrimers for Advanced Drug Delivery, in Advanced Biopolymeric Systems for Drug Delivery, 2020. Crossref

  3. Igartúa Daniela E., Ybarra David E., Cabezas Darío M., Alonso Silvia del V., Alvira Fernando C., Aging process of polyamidoamine dendrimers: Effect of pH and shaking in the fluorescence emission and aggregation‐state, Journal of Applied Polymer Science, 138, 29, 2021. Crossref

  4. Wang Lixiang, Zhou Mikael Ben, Zhang Hui, The Emerging Role of Topical Ocular Drugs to Target the Posterior Eye, Ophthalmology and Therapy, 10, 3, 2021. Crossref

  5. Sathe Rohit Y., Bharatam Prasad V., Drug-dendrimer complexes and conjugates: Detailed furtherance through theory and experiments, Advances in Colloid and Interface Science, 303, 2022. Crossref

  6. Ndebele Rejoice Thubelihle, Yao Qing, Shi Yan-Nan, Zhai Yuan-Yuan, Xu He-Lin, Lu Cui-Tao, Zhao Ying-Zheng, Progress in the Application of Nano- and Micro-based Drug Delivery Systems in Pulmonary Drug Delivery, BIO Integration, 3, 2, 2022. Crossref

  7. Singh Bhupinder, Sharma Teenu, Kaur Ranjot, Saini Sumant, Kaur Ripandeep, Beg Sarwar, QbD-Steered Systematic Development of Drug Delivery Nanoconstructs: Vital Precepts, Retrospect and Prospects, in Biomedical Translational Research, 2022. Crossref

  8. Bachhuka Akash, Chand Yadav Tara, Santos Abel, Marsal Lluis F., Ergün Süleyman, Karnati Srikanth, Emerging nanomaterials for targeting peroxisomes, Materials Today Advances, 15, 2022. Crossref

  9. Ali Asad , Akhtar Juber , Ahmad Usama, Basheer Abdul Samad , Jaiswal Neha , Jahan Afroz , Armamentarium in Drug Delivery for Colorectal Cancer , Critical Reviews™ in Therapeutic Drug Carrier Systems, 40, 1, 2023. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain