Abo Bibliothek: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 0743-4863

ISSN Online: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Diblock Copolymer Nanoparticles for Drug Delivery

Volumen 15, Ausgabe 5, 1998, 32 pages
DOI: 10.1615/CritRevTherDrugCarrierSyst.v15.i5.20
Get accessGet access

ABSTRAKT

Diblock copolymers can form nanoparticles, that is, micelles and nanospheres, that are being studied as carriers for hydrophobic drugs and genes. The synthetic carriers mimic the spherical, supramolecular core/shell structure of lipopro teins and viruses. Hence, diblock copolymer nanoparticles may be functional, having the ability to solubilize, protect, and release drugs at sustained rates. Several studies have illustrated prolonged residence times in blood for diblock copolymer nanoparticles. They have also enhanced drug effects in animals. Diblock copolymer nanoparticles are potentially useful carriers for site-specific drug delivery.

REFERENZIERT VON
  1. Rösler Annette, Vandermeulen Guido W.M., Klok Harm-Anton, Advanced drug delivery devices via self-assembly of amphiphilic block copolymers, Advanced Drug Delivery Reviews, 64, 2012. Crossref

  2. Lin Wen-Jen, Wang Chia-Ling, Juang Lee-Wei, Characterization and comparison of diblock and triblock amphiphilic copolymers of poly(δ-valerolactone), Journal of Applied Polymer Science, 100, 3, 2006. Crossref

  3. Förster Stephan, Plantenberg Thomas, Von selbstorganisierenden Polymeren zu Nanohybrid- und Biomaterialien, Angewandte Chemie, 114, 5, 2002. Crossref

  4. Studer Peggy, Breton Pascal, Riess Gérard, Allyl End-Functionalized Poly(ethylene oxide)-block-poly(methylidene malonate 2.1.2) Block Copolymers: Synthesis, Characterization, and Chemical Modification, Macromolecular Chemistry and Physics, 206, 24, 2005. Crossref

  5. Chen Xiangrong, Ding Xiaobin, Zheng Zhaohui, Peng Yuxing, Thermosensitive cross-linked polymer vesicles for controlled release system, New Journal of Chemistry, 30, 4, 2006. Crossref

  6. Musacchio Tiziana, Torchilin Vladimir, , 2013. Crossref

  7. Biswas Swati, Vaze Onkar S., Movassaghian Sara, Torchilin Vladimir P., Polymeric Micelles for the Delivery of Poorly Soluble Drugs, in Drug Delivery Strategies for Poorly Water-Soluble Drugs, 2013. Crossref

  8. Micelles, in Surfactants and Polymers in Drug Delivery, 122, 2002. Crossref

  9. Bhatt Sudhir, Pulpytel Jerome, Mirshahi Massoud, Arefi-Khonsari Farzaneh, Plasma co-polymerized nano coatings – As a biodegradable solid carrier for tunable drug delivery applications, Polymer, 54, 18, 2013. Crossref

  10. Reddy L. Harivardhan, Bazile Didier, Drug delivery design for intravenous route with integrated physicochemistry, pharmacokinetics and pharmacodynamics: Illustration with the case of taxane therapeutics, Advanced Drug Delivery Reviews, 71, 2014. Crossref

  11. Lv Yin, Yang Bin, Jiang Tao, Li You-Mei, He Feng, Zhuo Ren-Xi, Folate-conjugated amphiphilic block copolymers for targeted and efficient delivery of doxorubicin, Colloids and Surfaces B: Biointerfaces, 115, 2014. Crossref

  12. Fatouros Dimitrios G., Antimisiaris Sophia G., Effect of Amphiphilic Drugs on the Stability and Zeta-Potential of Their Liposome Formulations: A Study with Prednisolone, Diazepam, and Griseofulvin, Journal of Colloid and Interface Science, 251, 2, 2002. Crossref

  13. Gindy Marian E., Prud’homme Robert K., Panagiotopoulos Athanassios Z., Phase behavior and structure formation in linear multiblock copolymer solutions by Monte Carlo simulation, The Journal of Chemical Physics, 128, 16, 2008. Crossref

  14. Quattrociocchi Gianandrea, Francolini Iolanda, Martinelli Andrea, D'Ilario Lucio, Piozzi Antonella, Synthesis and properties of block poly(ether-ester)s based on poly(ethylene oxide) and various hydrophobic segments, Polymer International, 2010. Crossref

  15. Shen Shu, Du Juan, Guo Xiao-yu, Wen Ying, Yang Hai-Feng, Adsorption behavior of pH-dependent phytic acid micelles at the copper surface observed by Raman and electrochemistry, Applied Surface Science, 327, 2015. Crossref

  16. Yin Yuan, Rassias Dina, Jain Anjana, Polymeric Biomaterials for Medical Diagnostics in the Central Nervous System, in Natural and Synthetic Biomedical Polymers, 2014. Crossref

  17. Zhang Zheng, Ramezanli Tannaz, Tsai Pei-Chin, Michniak-Kohn Bozena, Drug Delivery Systems Based on Tyrosine-Derived Nanospheres (TyroSpheres™): Drug Delivery Systems Based on Tyrosine-Derived Nanospheres (TyroSpheres™), in Nanotechnology and Drug Delivery, Volume One, 2014. Crossref

  18. Bisht Savita, Maitra Amarnath, Dextran–doxorubicin/chitosan nanoparticles for solid tumor therapy, WIREs Nanomedicine and Nanobiotechnology, 1, 4, 2009. Crossref

  19. Xiong May P., Yáñez Jaime A., Kwon Glen S., Davies Neal M., Laird Forrest M., A Cremophor-Free Formulation for Tanespimycin (17-AAG) Using PEO-b-PDLLA Micelles: Characterization and Pharmacokinetics in Rats, Journal of Pharmaceutical Sciences, 98, 4, 2009. Crossref

  20. Aliabadi Hamidreza Montazeri, Shahin Mostafa, Brocks Dion R, Lavasanifar Afsaneh, Disposition of Drugs in Block Copolymer Micelle Delivery Systems, Clinical Pharmacokinetics, 47, 10, 2008. Crossref

  21. Azagarsamy Malar A., Gomez-Escudero Andrea, Yesilyurt Volkan, Vachet Richard W., Thayumanavan S., Amphiphilic nanoassemblies for the detection of peptides and proteins using fluorescence and mass spectrometry, The Analyst, 134, 4, 2009. Crossref

  22. Letchford Kevin, Liggins Richard, Burt Helen, Solubilization of hydrophobic drugs by methoxy poly(ethylene glycol)‐block‐polycaprolactone diblock copolymer micelles: Theoretical and experimental data and correlations, Journal of Pharmaceutical Sciences, 97, 3, 2008. Crossref

  23. Shen Youqing, Zhan Yihong, Tang Jianbin, Xu Peisheng, Johnson Patrick A., Radosz Maciej, Van Kirk Edward A., Murdoch William J., Multifunctioning pH-responsive nanoparticles from hierarchical self-assembly of polymer brush for cancer drug delivery, AIChE Journal, 54, 11, 2008. Crossref

  24. Cheng Dong-Bing, Li You-Mei, Cheng Yin-Jia, Wu Yan, Chang Xiu-Peng, He Feng, Zhuo Ren-Xi, Thymine-functionalized amphiphilic biodegradable copolymers for high-efficiency loading and controlled release of methotrexate, Colloids and Surfaces B: Biointerfaces, 136, 2015. Crossref

  25. Liggins R.T., Burt H.M., Polyether–polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations, Advanced Drug Delivery Reviews, 54, 2, 2002. Crossref

  26. Torchilin Vladimir P, PEG-based micelles as carriers of contrast agents for different imaging modalities, Advanced Drug Delivery Reviews, 54, 2, 2002. Crossref

  27. Koňák Čestmı́r, Ganchev Boyan, Teodorescu Mircea, Matyjaszewski Krzysztof, Kopečková Pavla, Kopeček Jindřich, Poly[ N -(2-hydroxypropyl)methacrylamide- block - n -butyl acrylate] micelles in water/DMF mixed solvents, Polymer, 43, 13, 2002. Crossref

  28. Jaiswal Munmun, Kumar Manish, Pathak Kamla, Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis, Colloids and Surfaces B: Biointerfaces, 130, 2015. Crossref

  29. Wu Weitai, Shen Jing, Banerjee Probal, Zhou Shuiqin, A Multifuntional Nanoplatform Based on Responsive Fluorescent Plasmonic ZnO-Au@PEG Hybrid Nanogels, Advanced Functional Materials, 21, 15, 2011. Crossref

  30. Xiong May P., Yáñez Jaime A., Remsberg Connie M., Ohgami Yusuke, Kwon Glen S., Davies Neal M., Forrest M. Laird, Formulation of a geldanamycin prodrug in mPEG-b-PCL micelles greatly enhances tolerability and pharmacokinetics in rats, Journal of Controlled Release, 129, 1, 2008. Crossref

  31. Perkins Walter R., Ahmad Imran, Li Xingong, Hirsh Donald J., Masters Gregg R., Fecko Christopher J., Lee JinKeun, Ali Shaukat, Nguyen Josephine, Schupsky James, Herbert Cathy, Janoff Andrew S., Mayhew Eric, Novel therapeutic nano-particles (lipocores): trapping poorly water soluble compounds, International Journal of Pharmaceutics, 200, 1, 2000. Crossref

  32. Kim Sung Chul, Yoon Hye Jeong, Lee Jang Won, Yu Jaewon, Park Eun-Seok, Chi Sang-Cheol, Investigation of the release behavior of DEHP from infusion sets by paclitaxel-loaded polymeric micelles, International Journal of Pharmaceutics, 293, 1-2, 2005. Crossref

  33. Stolnik S, Daudali B, Arien A, Whetstone J, Heald C.R, Garnett M.C, Davis S.S, Illum L, The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1514, 2, 2001. Crossref

  34. Yang Lin, Alexandridis Paschalis, Physicochemical aspects of drug delivery and release from polymer-based colloids, Current Opinion in Colloid & Interface Science, 5, 1-2, 2000. Crossref

  35. Dos Santos Carolina Alves, Ribeiro Gabriel Borghesan, Knirsch Marcos Camargo, Junior Adalberto Pessoa, Vessoni Penna Thereza Christina, Influence of Pluronic® F68 on Ceftazidime Biological Activity in Parenteral Solutions, Journal of Pharmaceutical Sciences, 100, 2, 2011. Crossref

  36. Kim Sung Chul, Kim Dong Wook, Shim Yong Ho, Bang Joon Seok, Oh Hun Seung, Kim Sung Wan, Seo Min Hyo, In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy, Journal of Controlled Release, 72, 1-3, 2001. Crossref

  37. Letchford Kevin, Burt Helen, A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes, European Journal of Pharmaceutics and Biopharmaceutics, 65, 3, 2007. Crossref

  38. Foster Tobias, Dorfman Kevin D., Ted Davis H., Giant biocompatible and biodegradable PEG–PMCL vesicles and microcapsules by solvent evaporation from double emulsion droplets, Journal of Colloid and Interface Science, 351, 1, 2010. Crossref

  39. Lin Wen-Jen, Juang Lee-Wei, Wang Chia-Ling, Chen Yi-Chen, Lin Chi-Chang, Chang Kai-Ling, Pegylated Polyester Polymeric Micelles as a Nano-carrier: Synthesis, Characterization, Degradation, and Biodistribution, Journal of Experimental & Clinical Medicine, 2, 1, 2010. Crossref

  40. Maysinger Dusica, Berezovska Oksana, Savic Radoslav, Lim Soo Patrick, Eisenberg Adi, Block copolymers modify the internalization of micelle-incorporated probes into neural cells, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1539, 3, 2001. Crossref

  41. Deming Timothy J., Methodologies for preparation of synthetic block copolypeptides: materials with future promise in drug delivery, Advanced Drug Delivery Reviews, 54, 8, 2002. Crossref

  42. Lavasanifar Afsaneh, Samuel John, Kwon Glen S, Poly(ethylene oxide)-block-poly(l-amino acid) micelles for drug delivery, Advanced Drug Delivery Reviews, 54, 2, 2002. Crossref

  43. Studer Peggy, Larras Virginie, Riess Gérard, Amino end-functionalized poly(ethylene oxide)-block-poly(methylidene malonate 2.1.2) block copolymers: synthesis, characterization, and chemical modification for targeting purposes, European Polymer Journal, 44, 6, 2008. Crossref

  44. Rösler Annette, Vandermeulen Guido W.M, Klok Harm-Anton, Advanced drug delivery devices via self-assembly of amphiphilic block copolymers, Advanced Drug Delivery Reviews, 53, 1, 2001. Crossref

  45. Lavasanifar Afsaneh, Samuel John, Kwon Glen S., The effect of alkyl core structure on micellar properties of poly(ethylene oxide)-block-poly(l-aspartamide) derivatives, Colloids and Surfaces B: Biointerfaces, 22, 2, 2001. Crossref

  46. Elbayoumi Tamer, Torchilin Vladimir, Lipid-Based Pharmaceutical Nanocarriers for Imaging Applications, in Nanotechnology for Biomedical Imaging and Diagnostics, 2015. Crossref

  47. Torchilin Vladimir P., Structure and design of polymeric surfactant-based drug delivery systems, Journal of Controlled Release, 73, 2-3, 2001. Crossref

  48. Letchford Kevin, Zastre Jason, Liggins Richard, Burt Helen, Synthesis and micellar characterization of short block length methoxy poly(ethylene glycol)-block-poly(caprolactone) diblock copolymers, Colloids and Surfaces B: Biointerfaces, 35, 2, 2004. Crossref

  49. Letchford Kevin, Liggins Richard, Wasan Kishor M., Burt Helen, In vitro human plasma distribution of nanoparticulate paclitaxel is dependent on the physicochemical properties of poly(ethylene glycol)-block-poly(caprolactone) nanoparticles, European Journal of Pharmaceutics and Biopharmaceutics, 71, 2, 2009. Crossref

  50. Monteiro-Riviere Nancy, Ryman-Rasmussen Jessica, Toxicology of Nanomaterials, in Biological Concepts and Techniques in Toxicology, 2006. Crossref

  51. Aliabadi Hamidreza Montazeri, Lavasanifar Afsaneh, Polymeric micelles for drug delivery, Expert Opinion on Drug Delivery, 3, 1, 2006. Crossref

  52. Xiong Xiao-Bing, Lavasanifar Afsaneh, Montazeri Aliabadi Hamidreza, PEO-Modified Poly(L -Amino Acid) Micelles for Drug Delivery, in Nanotechnology for Cancer Therapy, 2006. Crossref

  53. Ali Saad A. M., Drug Delivery, in Encyclopedia of Supramolecular Chemistry, 2004. Crossref

  54. Lim Soo Patrick, Liu Jubo, Allen Christine, Lee Helen, Butler Mark, Polymeric Micelles for Formulation of Anti-Cancer Drugs, in Nanotechnology for Cancer Therapy, 2006. Crossref

  55. Lin Wen-Jen, Wang Chia-Ling, Chen Yi-Chen, Comparison of Two Pegylated Copolymeric Micelles and their Potential as Drug Carriers, Drug Delivery, 12, 4, 2005. Crossref

  56. Musacchio Tiziana, Torchilin Vladimir P., Micelles: Polymeric and Lipid-Core Drug Delivery Systems, in Encyclopedia of Biomedical Polymers and Polymeric Biomaterials, 2016. Crossref

  57. Gindy Marian E, Prud'homme Robert K, Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy, Expert Opinion on Drug Delivery, 6, 8, 2009. Crossref

  58. Haque Shadabul, Md Shadab, Alam Md. Intekhab, Sahni Jasjeet K., Ali Javed, Baboota Sanjula, Nanostructure-based drug delivery systems for brain targeting, Drug Development and Industrial Pharmacy, 38, 4, 2012. Crossref

  59. Stiborova Marie, Manhartova Zuzana, Hodek Petr, Adam Vojtech, Kizek Rene, Frei Eva, Formation of DNA Adducts by Ellipticine and Its Micellar Form in Rats — A Comparative Study, Sensors, 14, 12, 2014. Crossref

  60. Förster Stephan, Konrad Matthias, From self-organizing polymers to nano- and biomaterials, J. Mater. Chem., 13, 11, 2003. Crossref

  61. Gryparis E. C., Mattheolabakis G., Bikiaris D., Avgoustakis K., Effect of Conditions of Preparation on the Size and Encapsulation Properties of PLGA-mPEG Nanoparticles of Cisplatin, Drug Delivery, 14, 6, 2007. Crossref

  62. Torchilin Vladimir, Tumor-Targeted Delivery of Sparingly-Soluble Anti-Cancer Drugs with Polymeric Lipid-Core Immunomicelles, in Nanotechnology for Cancer Therapy, 2006. Crossref

  63. Park Gyu Han, Kang Min-Sil, Knowles Jonathan C, Gong Myoung-Seon, Synthesis, characterization, and biocompatible properties of alanine-grafted chitosan copolymers, Journal of Biomaterials Applications, 30, 9, 2016. Crossref

  64. Lv Yin, Yang Bin, Li You-Mei, He Feng, Zhuo Ren-Xi, Folate-conjugated amphiphilic block copolymer micelle for targeted and redox-responsive delivery of doxorubicin, Journal of Biomaterials Science, Polymer Edition, 29, 1, 2018. Crossref

  65. Cooper Valentino R., Lam Christopher N., Wang Yangyang, Sumpter Bobby G., Noncovalent Interactions in Nanotechnology, in Non-Covalent Interactions in Quantum Chemistry and Physics, 2017. Crossref

  66. Md Shadab, Bhattmisra Subrat K., Zeeshan Farrukh, Shahzad Naiyer, Mujtaba Md Ali, Srikanth Meka Venkata, Radhakrishnan Ammu, Kesharwani Prashant, Baboota Sanjula, Ali Javed, Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders, Journal of Drug Delivery Science and Technology, 43, 2018. Crossref

  67. Vinothini Kandasamy, Rajan Mariappan, Mechanism for the Nano-Based Drug Delivery System, in Characterization and Biology of Nanomaterials for Drug Delivery, 2019. Crossref

  68. Fernandes Clara, Soni Umangi, Patravale Vandana, Nano-interventions for neurodegenerative disorders, Pharmacological Research, 62, 2, 2010. Crossref

  69. Khan Rizwan Ullah, Yu Haojie, Wang Li, Teng Lisong, Zain‐ul‐Abdin , Nazir Ahsan, Fahad Shah, Elshaarani Tarig, Haq Fazal, Shen Di, Synthesis of amino‐cosubstituted polyorganophosphazenes and fabrication of their nanoparticles for anticancer drug delivery, Journal of Applied Polymer Science, 137, 46, 2020. Crossref

  70. Carrero M José, Borreguero Ana M, Rodríguez Juan F, Ramos María J, Different drug incorporation routes in ethylene oxide based copolymers, Polymer International, 69, 4, 2020. Crossref

  71. Alexander Amit, Agrawal Mukta, Bhupal Chougule Mahavir, Saraf Shailendra, Saraf Swarnlata, Nose-to-brain drug delivery, in Nanopharmaceuticals, 2020. Crossref

  72. Vhora Imran, Khatri Nirav, Misra Ambikanandan, Applications of Polymers in Parenteral Drug Delivery, in Applications of Polymers in Drug Delivery, 2021. Crossref

  73. Zeeshan Farrukh, Mishra Dinesh Kumar, Kesharwani Prashant, From the nose to the brain, nanomedicine drug delivery, in Theory and Applications of Nonparenteral Nanomedicines, 2021. Crossref

  74. Dahiya Rajiv, Dahiya Sunita, Advanced drug delivery applications of self-assembled nanostructures and polymeric nanoparticles, in Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications, 2021. Crossref

  75. Rodell Christopher B., Mealy Joshua E., Burdick Jason A., Supramolecular Guest–Host Interactions for the Preparation of Biomedical Materials, Bioconjugate Chemistry, 26, 12, 2015. Crossref

  76. Perrigue Patrick M., Murray Richard A., Mielcarek Angelika, Henschke Agata, Moya Sergio E., Degradation of Drug Delivery Nanocarriers and Payload Release: A Review of Physical Methods for Tracing Nanocarrier Biological Fate, Pharmaceutics, 13, 6, 2021. Crossref

  77. Pustulka Kevin M., Wohl Adam R., Lee Han Seung, Michel Andrew R., Han Jing, Hoye Thomas R., McCormick Alon V., Panyam Jayanth, Macosko Christopher W., Flash Nanoprecipitation: Particle Structure and Stability, Molecular Pharmaceutics, 10, 11, 2013. Crossref

  78. Deming T.J., Ring-Opening Polymerization of Amino Acid N-Carboxyanhydrides, in Polymer Science: A Comprehensive Reference, 2012. Crossref

  79. Mane Shivshankar R., Sathyan Ashlin, Shunmugam Raja, Biomedical Applications of pH-Responsive Amphiphilic Polymer Nanoassemblies, ACS Applied Nano Materials, 3, 3, 2020. Crossref

  80. Xu Xin, Gupta Bhavna, Nguyen Jennifer P., Jin Ruting, Garcia Manuel, Kaur Satvinder, Hasan Syed K., Watterson Arthur C., Ruths Marina, Stability and collapse of amphiphilic copolymer aggregates in contact with hydrophilic mica surfaces, Journal of Dispersion Science and Technology, 43, 10, 2022. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain