Abo Bibliothek: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 0743-4863

ISSN Online: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Nanoparticulate Carriers Used as Vaccine Adjuvant Delivery Systems

Volumen 36, Ausgabe 5, 2019, pp. 449-484
DOI: 10.1615/CritRevTherDrugCarrierSyst.2019027047
Get accessGet access

ABSTRAKT

Vaccination plays a crucial role in the control of infectious diseases, but often fails to eradicate certain refractory infections for which the development of an effective vaccine is eagerly desired but elusive. In many cases, failure in developing a vaccine is attributed to the inability of the candidates, especially among subunit vaccines, to evoke appropriate immuno-responses for establishing humoral as well as cellular immunity. In past decades, nanoparticles (NPs) sizing from 10 to 500 nm, such as liposomes, inorganic or metal NPs (iNPs), viruslike particles (VLPs), emulsions, immune-stimulating complexes (ISCOMs), and polymeric NPs, have been developed a potential carrier for vaccines to stabilize and deliver the adjuvant and antigens, thus forming proper vaccine adjuvant-delivery systems (VADSs). In particular, many NPs are rationally designed according to distinct cellular features and, therefore, are specifically engineered with functional materials so that they can deliver vaccine ingredients to target antigen-presenting cells (APCs) while directing immunoresponses against antigens along a specific Th1 (T helper type 1) and/or Th2 pathway to establish robust cellular and antibody immunity. In addition, a variety of NP-based VADSs are suitable for mucosal immunization, which contributes to systemic and, particularly, topical immunity, thus forming a dual barrier to pathogen invasion. This paper describes different NP-based VADSs designed for delivering vaccines, and evaluates their potential in the preparation of new products that can be used for prophylaxis against pathogens via different immunization routes.

REFERENZEN
  1. Plotkin SA. Vaccines: the fourth century. Clin Vaccine Immunol. 2009 Dec;16(12):1709-19. Pub-Med PMID: 19793898. PMCID: PMC2786381.

  2. Germain RN. Vaccines and the future of human immunology. Immunity. 2010 Oct 29;33(4):441-50. PubMed PMID: 21029956.

  3. Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Mi. 2013 Mar;3. PubMed PMID: W0S:000324647200007. English.

  4. Moyer TJ, Zmolek AC, Irvine DJ. Beyond antigens and adjuvants: formulating future vaccines. J Clin Invest. 2016 Mar 01;126(3):799-808. PubMed PMID: 26928033. PMCID: PMC4767337.

  5. Skwarczynski M, Toth I. Recent advances in peptide-based subunit nanovaccines. Nanomedicine (Lond). 2014 Dec;9(17):2657-69. PubMed PMID: 25529569.

  6. Karch CP, Burkhard P. Vaccine technologies: From whole organisms to rationally designed protein assemblies. Biochem Pharmacol. 2016 Nov 15;120:1-14. PubMed PMID: 27157411. PMCID: PMC5079805.

  7. Draper SJ, Sack BK, King CR, Nielsen CM, Rayner JC, Higgins MK, Long CA, Seder RA. Malaria vaccines: recent advances and new horizons. Cell Host Microbe. 2018 Jul 11;24(1):43-56. PubMed PMID: 30001524. PMCID: PMC6054918.

  8. Wang N, Wang T, Zhang M, Chen R, Niu R, Deng Y. Mannose derivative and lipid A dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant-delivery system. Eur J Pharm Biopharm. 2014 Sep;88(1):194-206. PubMed PMID: 24769065.

  9. Rey FA, Lok SM. Common features of enveloped viruses and implications for immunogen design for next-generation vaccines. Cell. 2018 Mar 8;172(6):1319-34. PubMed PMID: 29522750.

  10. Terbuch A, Lopez J. Next generation cancer vaccines-make it personal! Vaccines (Basel). 2018 Aug 9;6(3). PubMed PMID: 30096953.

  11. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010 Oct 29;33(4):492-503. PubMed PMID: 21029960. PMCID: PMC3420356.

  12. Wang X, Wang N, Li N, Zhen Y, Wang T. Multifunctional particle-constituted microneedle arrays as cutaneous or mucosal vaccine adjuvant-delivery systems. Hum Vaccin Immunother. 2016 Aug 02;12(8):2075-89. PubMed PMID: 27159879. PMCID: PMC4994742.

  13. Wang T, Zhen YY, Ma XY, Wei B, Wang N. Phospholipid Bilayer-coated aluminum nanoparticles as an effective vaccine adjuvant-delivery system. Acs Appl Mater Inter. 2015 Apr 1;7(12):6391-6. PubMed PMID: W0S:000352246700004. English.

  14. Wang T, Wang N. Preparation of the multifunctional liposome-containing microneedle arrays as an oral cavity mucosal vaccine adjuvant-delivery system. Methods Mol Biol. 2016;1404:651-67. PubMed PMID: 27076328. Epub 2016/04/15.

  15. Wang T, Wang N. Biocompatible materials constructed microneedle arrays as a novel vaccine adjuvant-delivery system for cutaneous and mucosal vaccination. Curr Pharm Design. 2015;21(36):5245-55. PubMed PMID: W0S:000364517500008.

  16. Wang N, Wang T. Preparation of multifunctional liposomes as a stable vaccine delivery-adjuvant system by procedure of emulsification-lyophilization. Methods Mol Biol. 2016;1404:635-49. PubMed PMID: 27076327.

  17. Di Pasquale A, Preiss S, Tavares Da Silva F, Garcon N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines (Basel). 2015 Apr 16;3(2):320-43. PubMed PMID: 26343190. PMCID: PMC4494348.

  18. Akira S. Innate immunity and adjuvants. Philos Trans R Soc Lond B Biol Sci. 2011 Oct 12;366(1579):2748-55. PubMed PMID: 21893536. PMCID: PMC3146784.

  19. Alving CR, Peachman KK, Rao M, Reed SG. Adjuvants for human vaccines. Curr Opin Immunol. 2012 Jun;24(3):310-5. PubMed PMID: 22521140. Epub 2012/04/24.eng.

  20. Wang N, Zhen Y, Jin Y, Wang X, Li N, Jiang S, Wang T. Combining different types of multifunctional liposomes loaded with ammonium bicarbonate to fabricate microneedle arrays as a vaginal mucosal vaccine adjuvant-dual delivery system (VADDS). J Control Release. 2017 Jan 28;246:12-29. Pub.

  21. Wang N, Wang T, Zhang M, Chen R, Deng Y. Using procedure of emulsification-lyophilization to form lipid A-incorporating cochleates as an effective oral mucosal vaccine adjuvant-delivery system (VADS). Int J Pharm. 2014 Jul 1;468(1-2):39-49. PubMed PMID: 24704308. Epub 2014/04/08. eng.

  22. Sahdev P, Ochyl LJ, Moon JJ. Biomaterials for nanoparticle vaccine delivery systems. Pharm Res. 2014 0ct;31(10):2563-82. PubMed PMID: 24848341. PMCID: PMC4198431.

  23. Vajjhala PR, Ve T, Bentham A, Stacey KJ, Kobe B. The molecular mechanisms of signaling by cooperative assembly formation in innate immunity pathways. Mol Immunol. 2017 Jun;86:23-37. PubMed PMID: 28249680.

  24. Du J, Zhang YS, Hobson D, Hydbring P. Nanoparticles for immune system targeting. Drug Discov Today. 2017 Apr 05. PubMed PMID: 28390214.

  25. De Temmerman ML, Rejman J, Demeester J, Irvine DJ, Gander B, De Smedt SC. Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today. 2011 Jul;16(13-14):569-82. PubMed PMID: 21570475.

  26. Arens R. Rational design of vaccines: learning from immune evasion mechanisms of persistent viruses and tumors. Adv Immunol. 2012;114:217-43. PubMed PMID: 22449784.

  27. Hem SL, Hogen Esch H. Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Rev Vaccines. 2007 Oct;6(5):685-98. PubMed PMID: W0S:000250656300014. English.

  28. Tomljenovic L, Shaw CA. Aluminum Vaccine adjuvants: are they safe? Curr Med Chem. 2011 Jun;18(17):2630-7. PubMed PMID: W0S:000291645700011. English.

  29. Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol. 2009 Apr;9(4):287-93. PubMed PMID: 19247370. PMCID: PMC3147301.

  30. Moyano DF, Liu YC, Peer D, Rotello VM. Modulation of immune response using engineered nano-particle surfaces. Small. 2016 Jan 6;12(1):76-82. PubMed PMID: W0S:000367918500007. English.

  31. Meyer RA, Sunshine JC, Perica K, Kosmides AK, Aje K, Schneck JP, Green JJ. Biodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activation. Small. 2015 Apr;11(13):1519-25. PubMed PMID: W0S:000352555000003.

  32. Wibroe PP, Anselmo AC, Nilsson PH, Sarode A, Gupta V, Urbanics R, Szebeni J, Hunter AC, Mitragotri S, Mollnes TE, Moghimi SM. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nature Nanotechnol. 2017 Jun;12(6):589. PubMed PMID: W0S:000402769100019.

  33. Sunshine JC, Perica K, Schneck JP, Green JJ. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells. Biomaterials. 2014 Jan;35(1):269-77. PubMed PMID: W0S:000328006100026.

  34. Wen Y, Waltman A, Han HF, Collier JH. Switching the immunogenicity of peptide assemblies using surface properties. Acs Nano. 2016 0ct;10(10):9274-86. PubMed PMID: W0S:000386423600027.

  35. Frohlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed. 2012;7:5577-91. PubMed PMID: 23144561. PMCID: PMC3493258.

  36. Toy R, Roy K. Engineering nanoparticles to overcome barriers to immunotherapy. Bioeng Transl Med. 2016 Mar;1(1):47-62. PubMed PMID: 29313006. PMCID: PMC5689503.

  37. Gammon JM, Tostanoski LH, Adapa AR, Chiu YC, Jewell CM. Controlled delivery of a metabolic modulator promotes regulatory T cells and restrains autoimmunity. J Control Release. 2015 Jul;210:169-78. PubMed PMID: W0S:000356238700018.

  38. Northrup L, Christopher MA, Sullivan BP, Berldand C. Combining antigen and immunomodulators: emerging trends in antigen-specific immunotherapy for autoimmunity. Adv Drug Deliv Rev. 2016 Mar;98:86-98. PubMed PMID: W0S:000370895000008.

  39. Wang C, Ye YQ, Hochu GM, Sadeghifar H, Gu Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 2016 Apr;16(4):2334-40. PubMed PMID: W0S:000374274600031.

  40. 0berli MA, Reichmuth AM, Dorkin JR, Mitchell MJ, Fenton 0S, Jaklenec A, Anderson DG, Langer R, Blankschtein D. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 2017 Mar;17(3):1326-35. PubMed PMID: W0S:000396185800002.

  41. Gause KT, Yan Y, 0'Brien-Simpson NM, Cui JW, Lenzo JC, Reynolds EC, Caruso F. Codelivery of N0D2 and TLR9 ligands via nanoengineered protein antigen particles for improving and tuning immune responses. Adv Funct Mat. 2016 Nov;26(41):7526-36. PubMed PMID: W0S:000387545500017.

  42. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965 Aug;13(1):238-52. PubMed PMID: 5859039.

  43. Gregoriadis G. Liposome research in drug delivery: The early days. J Drug Target. 2008; 16(7-8):520-4. PubMed PMID: W0S:000258246500003. English.

  44. Gregoriadis G, McCormack B, Obrenovic M, Perrie Y, Saffie R. Liposomes as immunological adjuvants and vaccine carriers. In: O'Hagan DT, editor. Vaccine adjuvants. Methods and Molecular Medicine Book Series. vol. 42. Totowa, NJ: Springer; 2000. p. 137-150.

  45. Barenholz Y. Doxil-the first FDA-approved nano-drug: lessons learned. J Control Release. 2012 Jun 10;160(2):117-34. PubMed PMID: 22484195.

  46. Weissig V. Liposomes came first: the early history of liposomology. Methods Mol Biol. 2017;1522:1-15. PubMed PMID: 27837526.

  47. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013 Jan;65(1):36-48. PubMed PMID: 23036225.

  48. Allison AG, Gregoriadis G. Liposomes as immunological adjuvants. Nature. 1974 Nov 15;252(5480): 252. PubMed PMID: 4424229.

  49. Gregoriadis G, Allison AC. Entrapment of proteins in liposomes prevents allergic reactions in pre-immunised mice. FEBS Lett. 1974 Sep 01;45(1):71-4. PubMed PMID: 4278086.

  50. Perrie Y, Crofts F, Devitt A, Griffiths HR, Kastner E, Nadella V. Designing liposomal adjuvants for the next generation of vaccines. Adv Drug Deliv Rev. 2016 Apr 01;99(Pt A):85-96. PubMed PMID: 26576719.

  51. Wang N, Wang T, Zhang ML, Chen RN, Niu RW, Deng YH. Mannose derivative and lipid A dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant-delivery system. Eur J Pharm Biopharm. 2014 Sep;88(1):194-206. PubMed PMID: W0S:000342870100023.

  52. Wang T, Zhen YY, Ma XY, Wei BA, Li SQ, Wang NN. Mannosylated and lipid A-incorporating cationic liposomes constituting microneedle arrays as an effective oral mucosal HBV vaccine applicable in the controlled temperature chain. Colloid Surface B. 2015 Feb 1;126:520-30. PubMed PMID: W0S:000350918900067. English.

  53. Weinberger B. Adjuvant strategies to improve vaccination of the elderly population. Curr Opin Pharmacol. 2018 Aug;41:34-41. PubMed PMID: 29677646. Epub 2018/04/21.

  54. Papahadjopoulos D, Vail WJ, Jacobson K, Poste G. Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim Biophys Acta. 1975 Jul 03;394(3):483-91. PubMed PMID: 805602.

  55. Senior K. Bilosomes: the answer to oral vaccine delivery? Drug Discov Today. 2001 Oct 15;6(20): 1031-2. PubMed PMID: 11590024.

  56. Moon JJ, Suh H, Bershteyn A, Stephan MT, Liu H, Huang B, Sohail M, Luo S, Ho Um S, Khant H, Goodwin JT, Ramos J, Chiu W, Irvine DJ. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat Mater. 2011;10(3):243-51.

  57. Zhen YY, Wang N, Gao ZB, Ma XY, Wei BA, Deng YH, Wang T. Multifunctional liposomes constituting microneedles induced robust systemic and mucosal immunoresponses against the loaded antigens via oral mucosal vaccination. Vaccine. 2015 Aug 20;33(35):4330-40. PubMed PMID: W0S:000360870500016. English.

  58. McKee AS, Marrack P. Old and new adjuvants. Curr Opin Immunol. 2017 Aug;47:44-51. PubMed PMID: 28734174. PMCID: PMC5724967.

  59. Masson JD, Thibaudon M, Belec L, Crepeaux G. Calcium phosphate: a substitute for aluminum adjuvants? Expert Rev Vaccines. 2017 Mar;16(3):289-99. PubMed PMID: 27690701.

  60. O'Hagan DT, Ott GS, Van Nest G, Rappuoli R, Del Giudice G. The history of MF59 adjuvant: a phoenix that arose from the ashes. Expert Rev Vaccines. 2013 Jan;12(1):13-30. PubMed PMID: WOS:000315166400008. English.

  61. Frey A, Mantis N, Kozlowski PA, Quayle AJ, Bajardi A, Perdomo JJ, Robey FA, Neutra MR. Immunization of mice with peptomers covalently coupled to aluminum oxide nanoparticles. Vaccine. 1999 Aug 6;17(23-24):3007-19. PubMed PMID: 10462236.

  62. Li X, Aldayel AM, Cui Z. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles. J Control Release. 2014 Jan 10;173:148-57. PubMed PMID: 24188959. Epub 2013/11/06. eng.

  63. Li X, Hufnagel S, Xu HY, Valdes SA, Thakkar SG, Cui ZR, Celio H. Aluminum (oxy)hydroxide na nosticks synthesized in bicontinuous reverse microemulsion have potent vaccine adjuvant activity. Acs Appl Mater Inter. 2017 Jul 12;9(27):22893-901. PubMed PMID: WOS:000405764700085. English.

  64. Thakkar SG, Xu H, Li X, Cui Z. Uric acid and the vaccine adjuvant activity of aluminium (oxy) hydroxide nanoparticles. J Drug Target. 2018 Jun-Jul;26(5-6):474-80. PubMed PMID: 29334279.

  65. Kahn AL, Kristensen D, Rao R. Extending supply chains and improving immunization coverage and equity through controlled temperature chain use of vaccines. Vaccine. 2017 Apr 19;35(17):2214-6. PubMed PMID: WOS:000400215000022.

  66. Chiu D, Zhou W, Kitayaporn S, Schwartz DT, Murali-Krishna K, Kavanagh TJ, Baneyx F. Biomineralization and size control of stable calcium phosphate core-protein shell nanoparticles: potential for vaccine applications. Bioconjug Chem. 2012 Mar 21;23(3):610-7. PubMed PMID: 22263898. PMCID: PMC3310268.

  67. Morcl T, Hurst BL, Tarbet EB. Calcium phosphate nanoparticle (CaPNP) for dose-sparing of inactivated whole virus pandemic influenza A (H1N1) 2009 vaccine in mice. Vaccine. 2017 Aug 16;35(35 Pt B):4569-77. PubMed PMID: 28716554. PMCID: PMC5562532.

  68. Powell TJ, Palath N, DeRome ME, Tang J, Jacobs A, Boyd JG. Synthetic nanoparticle vaccines produced by layer-by-layer assembly of artificial biofilms induce potent protective T-cell and antibody responses in vivo. Vaccine. 2011 Jan 10;29(3):558-69. PubMed PMID: 20951665.

  69. Chen YS, Hung YC, Lin WH, Huang GS. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology. 2010 May 14;21(19). PubMed PMID: W0S:000276911000001. English.

  70. Tao W, Hurst BL, Shakya AK, Uddin MJ, Ingrole RS, Hernandez-Sanabria M, Arya RP, Bimler L, Paust S, Tarbet EB, Gill HS. Consensus M2e peptide conjugated to gold nanoparticles confers protection against H1N1, H3N2 and H5N1 influenza A viruses. Antiviral Res. 2017 May;141:62-72. PubMed PMID: 28161578. PMCID: PMC5572660.

  71. Al-Barwani F, Donaldson B, Pelham SJ, Young SL, Ward VK. Antigen delivery by virus-like particles for immunotherapeutic vaccination. Ther Deliv. 2014 Nov;5(11):1223-40. PubMed PMID: 25491672.

  72. Shirbaghaee Z, Bolhassani A. Different applications of virus-like particles in biology and medicine: vaccination and delivery systems. Biopolymers. 2016 Mar; 105(3): 113-32. PubMed PMID: 26509554.

  73. Walldorf JA, Date KA, Sreenivasan N, Harris JB, Hyde TB. Lessons learned from emergency response vaccination efforts for cholera, typhoid, yellow fever, and ebola. Emerg Infect Dis. 2017 Dec;23(13). PubMed PMID: 29155670. PMCID: PMC5711321.

  74. Westerhoff M, Ahn J. Chronic hepatitis C and direct acting antivirals. Surg Pathol Clin. 2018 Jun;11(2):287-96. PubMed PMID: 29751875.

  75. Earnest-Silveira L, Christiansen D, Herrmann S, Ralph SA, Das S, Gowans EJ, Torresi J. Large scale production of a mammalian cell derived quadrivalent hepatitis C virus like particle vaccine. J Virol Methods. 2016 0ct;236:87-92. PubMed PMID: 27373602.

  76. Christiansen D, Earnest-Silveira L, Chua B, Meuleman P, Boo I, Grubor-Bauk B, Jackson DC, Keck ZY, Foung SKH, Drummer HE, Gowans EJ, Torresi J. Immunological responses following administration of a genotype 1a/1b/2/3a quadrivalent HCV VLP vaccine. Sci Rep. 2018 Apr 24;8(1):6483. PubMed PMID: 29691437. PMCID: PMC5915487.

  77. Boucher CA, Bobkova MR, Geretti AM, Hung CC, Kaiser R, Marcelin AG, Streinu-Cercel A, van Wyk J, Dorr P, Vandamme AM. State of the art in HIV drug resistance: science and technology knowledge gap. AIDS Rev. 2018 Jan-Mar;20(1):27-42. PubMed PMID: 29628515.

  78. Gao Y, McKay PF, Mann JFS. Advances in HIV-1 vaccine development. Viruses. 2018 Apr 1;10(4). PubMed PMID: 29614779. PMCID: PMC5923461.

  79. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, Premsri N, Namwat C, de Souza M, Adams E, Benenson M, Gurunathan S, Tartaglia J, McNeil JG, Francis DP, Stablein D, Birx DL, Chunsuttiwat S, Khamboonruang C, Thongcharoen P, Robb ML, Michael NL, Kunasol P, Kim JH, Investigators M-T. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med. 2009 Dec 3;361(23):2209-20. PubMed PMID: 19843557.

  80. Karnasuta C, Akapirat S, Madnote S, Savadsuk H, Puangkaew J, Rittiroongrad S, Rerks-Ngarm S, Nitayaphan S, Pitisuttithum P, Kaewkungwal J, Tartaglia J, Sinangil F, Francis DP, Robb ML, de Souza MS, Michael NL, Excler JL, Kim JH, O'Connell RJ, Karasavvas N. Comparison of antibody responses induced by RV144, VAX003, and VAX004 vaccination regimens. AIDS Res Hum Retroviruses. 2017 May;33(5):410-23. PubMed PMID: 28006952. PMCID: PMC5439458.

  81. Kwong PD, Mascola JR, Nabel GJ. Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning. Nat Rev Immunol. 2013 Sep;13(9):693-701. PubMed PMID: 23969737.

  82. Andersson AC, Schwerdtfeger M, Holst PJ. Virus-like-vaccines against HIV. Vaccines (Basel). 2018 Feb 11;6(1). PubMed PMID: 29439476. PMCID: PMC5874651.

  83. Chapman R, Jongwe TI, Douglass N, Chege G, Williamson AL. Heterologous prime-boost vaccination with DNA and MVA vaccines, expressing HIV-1 subtype C mosaic Gag virus-like particles, is highly immunogenic in mice. PLoS One. 2017 Mar 9;12(3). PubMed PMID: W0S:000396087900076. English.

  84. Poteet E, Lewis P, Chen C, Ho SO, Do T, Chiang S, Labranche C, Montefiori D, Fujii G, Yao Q. Toll-like receptor 3 adjuvant in combination with virus-like particles elicit a humoral response against HIV. Vaccine. 2016 Nov 21;34(48):5886-94. PubMed PMID: 27997339.

  85. Wiratsudakul A, Suparit P, Modchang C. Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches. Peer J. 2018;6:e4526. PubMed PMID: 29593941. PMCID: PMC5866925.

  86. Richner JM, Diamond MS. Zika virus vaccines: immune response, current status, and future challenges. Curr Opin Immunol. 2018 May 9;53:130-6. PubMed PMID: 29753210.

  87. Salvo MA, Kingstad-Bakke B, Salas-Quinchucua C, Camacho E, Osorio JE. Zika virus like particles elicit protective antibodies in mice. PLoS Negl Trop Dis. 2018 Feb;12(2):e0006210. PubMed PMID: 29401460. PMCID: PMC5814096.

  88. Kaslow DC, Biernaux S. RTS,S: toward a first landmark on the malaria vaccine technology roadmap. Vaccine. 2015 Dec 22;33(52):7425-32. PubMed PMID: 26431982.

  89. Marto J, Ascenso A, Simoes S, Almeida AJ, Ribeiro HM. Pickering emulsions: challenges and opportunities in topical delivery. Expert Opin Drug Deliv. 2016 Aug;13(8):1093-107. PubMed PMID: 27108850.

  90. Lewis PA, Dodge FW. The sterilization of lipovaccines. J Exp Med. 1920 Jan 31;31(2):169-75. Pub-Med PMID: 19868395. PMCID: PMC2128225.

  91. Freund J. The effect of paraffin oil and mycobacteria on antibody formation and sensitization: a review. Am J Clin Pathol. 1951 Jul;21(7):645-56. PubMed PMID: 14846770.

  92. Edelman R. Vaccine adjuvants. Rev Infect Dis. 1980 May-Jun;2(3): 370-83. PubMed PMID: 6997966.

  93. Fox CB, Haensler J. An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants. Expert Rev Vaccines. 2013 Jul;12(7):747-58. PubMed PMID: 23885820.

  94. Garcon N, Vaughn DW, Didierlaurent AM. Development and evaluation of AS03, an adjuvant system containing alpha-tocopherol and squalene in an oil-in-water emulsion. Expert Rev Vaccines. 2012 Mar;11(3):349-66. PubMed PMID: 22380826.

  95. Klucker MF, Dalencon F, Probeck P, Haensler J. AF03, an alternative squalene emulsion-based vaccine adjuvant prepared by a phase inversion temperature method. J Pharm Sci. 2012 Dec;101(12):4490-500. PubMed PMID: 22941944.

  96. Schmidt ST, Pedersen GK, Neustrup MA, Korsholm KS, Rades T, Andersen P, Foged C, Christensen D. Induction of cytotoxic T-lymphocyte responses upon subcutaneous administration of a subunit vaccine adjuvanted with an emulsion containing the toll-like receptor 3 ligand poly(I:C). Front Immunol. 2018 Apr 30;9. PubMed PMID: WOS:000431174300001. English.

  97. Xia Y, Wu J, Wei W, Du Y, Wan T, Ma X, An W, Guo A, Miao C, Yue H, Li S, Cao X, Su Z, Ma G. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. Nat Mater. 2018 Feb;17(2):187-94. PubMed PMID: 29300052.

  98. Pearse MJ, Drane D. ISCOMATRIX adjuvant for antigen delivery. Adv Drug Deliv Rev. 2005 Jan 10;57(3):465-74. PubMed PMID: 15560952.

  99. Morein B, Sundquist B, Hoglund S, Dalsgaard K, Osterhaus A. Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature. 1984 Mar-Apr;308(5958):457-60. PubMed PMID: 6709052.

  100. Zhu D, Tuo W. QS-21: a potent vaccine adjuvant. Nat Prod Chem Res. 2016 Apr;3(4). PubMed PMID: 27213168. PMCID: PMC4874334.

  101. Kensil CR, Patel U, Lennick M, Marciani D. Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J Immunol. 1991 Jan 15;146(2):431-7. PubMed PMID: 1987271.

  102. Ronnberg B, Fekadu M, Morein B. Adjuvant activity of non-toxic Quillaja saponaria Molina components for use in ISCOM matrix. Vaccine. 1995 Oct;13(14):1375-82. PubMed PMID: 8585296.

  103. Drane D, Gittleson C, Boyle J, Maraskovsky E. ISCOMATRIX adjuvant for prophylactic and therapeutic vaccines. Expert Rev Vaccines. 2007 Oct;6(5):761-72. PubMed PMID: 17931156.

  104. Morein B, Lovgren K, Hoglund S, Sundquist B. The ISCOM: an immunostimulating complex. Immunol Today. 1987;8(11):333-8. PubMed PMID: 25291058.

  105. Bengtsson KL, Morein B, Osterhaus ADME. ISCOM technology-based Matrix M adjuvant: success in future vaccines relies on formulation. Expert Rev Vaccines. 2011 Apr;10(4):401-3. PubMed PMID: WOS:000290834400002.

  106. Garcia A, Lema D. An updated review of ISCOMS and ISCOMATRIX vaccines. Curr Pharm Design. 2016;22(41):6294-9. PubMed PMID: WOS:000390651300008.

  107. Duewell P, Kisser U, Heckelsmiller K, Hoves S, Stoitzner P, Koernig S, Morelli AB, Clausen BE, Dauer M, Eigler A, Anz D, Bourquin C, Maraskovsky E, Endres S, Schnurr M. ISCOMATRIX adjuvant combines immune activation with antigen delivery to dendritic cells in vivo leading to effective cross-priming of CD8+ T cells. J Immunol. 2011 Jul 1;187(1):55-63. PubMed PMID: 21613613. PMCID: PMC4285562.

  108. Wilson NS, Yang B, Morelli AB, Koernig S, Yang A, Loeser S, Airey D, Provan L, Hass P, Braley H, Couto S, Drane D, Boyle J, Belz GT, Ashkenazi A, Maraskovsky E. ISCOMATRIX vaccines mediate CD8+ T-cell cross-priming by a MyD88-dependent signaling pathway. Immunol Cell Biol. 2012 May;90(5):540-52. PubMed PMID: 21894173. PMCID: PMC3365289.

  109. Schiott A, Larsson K, Manniche S, Kalliomaki S, Heydenreich AV, Dalsgaard K, Kirkby N. Posintro-HBsAg, a modified ISCOM including HBsAg, induces strong cellular and humoral responses. Int J Pharm. 2011 Jul 29;414(1-2):312-20. PubMed PMID: 21601626. Epub 2011/05/24. eng.

  110. Shiwani HA, Pharithi RB, Khan B, Egom CB, Kruzliak P, Maher V, Egom EE. An update on the 2014 ebola outbreak in Western Africa. Asian Pac J Trop Med. 2017 Jan;10(1):6-10. PubMed PMID: 28107867.

  111. Bengtsson KL, Song H, Stertman L, Liu Y, Flyer DC, Massare MJ, Xu RH, Zhou B, Lu H, Kwilas SA, Hahn TJ, Kpamegan E, Hooper J, Carrion R Jr., Glenn G, Smith G. Matrix-M adjuvant enhances antibody, cellular and protective immune responses of a Zaire rbola/Makona virus glycoprotein (GP) nanoparticle vaccine in mice. Vaccine. 2016 Apr 7;34(16):1927-35. PubMed PMID: 26921779.

  112. Smith G, Liu Y, Flyer D, Massare MJ, Bin Z, Patel N, Ellingsworth L, Lewis M, Cummings JF, Glenn G. Novel hemagglutinin nanoparticle influenza vaccine with Matrix-M adjuvant induces hemagglutination inhibition, neutralizing, and protective responses in ferrets against homologous and drifted A(H3N2) subtypes. Vaccine. 2017 Sep 25;35(40):5366-72. PubMed PMID: WOS:000412258500011.

  113. Shinde V, Fries L, Wu Y, Agrawal S, Cho I, Thomas DN, Spindler M, Lindner E, Hahn T, Plested J, Flyer D, Massare MJ, Zhou B, Fix A, Smith G, Glenn GM. Improved titers against influenza drift variants with a nanoparticle vaccine. N Engl J Med. 2018 Jun 14;378(24):2346-8. PubMed PMID: 29897849.

  114. Kammona O, Bourganis V, Karamanidou T, Kiparissides C. Recent developments in nanocarrier-aided mucosal vaccination. Nanomedicine (Lond). 2017 May;12(9): 1057-74. PubMed PMID: 28440707.

  115. Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, McKenzie IF, Plebanski M. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol. 2004 Sep 1;173(5):3148-54. PubMed PMID: 15322175.

  116. Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010 Nov;10(11):787-96. PubMed PMID: 20948547. Epub 2010/10/16. eng.

  117. Schottler S, Becker G, Winzen S, Steinbach T, Mohr K, Landfester K, Mailander V, Wurm FR. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat Nanotechnol. 2016 Apr;11(4):372-7. PubMed PMID: W0S:000373455500015.

  118. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012 Jul 20;161(2):505-22. PubMed PMID: 22353619.

  119. Silva AL, Soema PC, Slutter B, Ossendorp F, Jiskoot W. PLGA particulate delivery systems for subunit vaccines: linking particle properties to immunogenicity. Hum Vaccin Immunother. 2016 Apr 2;12(4):1056-69. PubMed PMID: 26752261. PMCID: PMC4962933.

  120. Noormehr H, Zavaran Hosseini A, Soudi S, Beyzay F. Enhancement of Th1 immune response against Leishmania cysteine peptidase A, B by PLGA nanoparticle. Int Immunopharmacol. 2018 Jun;59:97-105. PubMed PMID: 29649772.

  121. Ebrahimian M, Hashemi M, Maleki M, Hashemitabar G, Abnous K, Ramezani M, Haghparast A. Co-delivery of dual toll-like receptor agonists and antigen in poly(lactic-co-glycolic) acid/polyethy-lenimine cationic hybrid nanoparticles promote efficient in vivo immune responses. Front Immunol. 2017;8:1077. PubMed PMID: 28955328. PMCID: PMC5601407.

  122. Garcia-Fuentes M, Alonso MJ. Chitosan-based drug nanocarriers: Where do we stand? J Control Release. 2012 Jul 20;161(2):496-504. PubMed PMID: WOS:000305790300034. English.

  123. Xing L, Fan YT, Zhou TJ, Gong JH, Cui LH, Cho KH, Choi YJ, Jiang HL, Cho CS. Chemical modification of chitosan for efficient vaccine delivery. Molecules. 2018 Jan 25;23(2). PubMed PMID: 29370100.

  124. Smith A, Perelman M, Hinchcliffe M. Chitosan: a promising safe and immune-enhancing adjuvant for intranasal vaccines. Human Vaccines Immunother. 2014;10(3):797-807. PubMed PMID: 24346613. PMCID: 4130252.

  125. Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S, Azuma I. Immunological activity of chitin and its derivatives. Vaccine. 1984 Mar;2(1):93-9. PubMed PMID: 6397928.

  126. Nishimura K, Ishihara C, Ukei S, Tokura S, Azuma I. Stimulation of cytokine production in mice using deacetylated chitin. Vaccine. 1986 Sep;4(3):151-6. PubMed PMID: 2429471.

  127. Jabbal-Gill I, Fisher AN, Rappuoli R, Davis SS, Illum L. Stimulation of mucosal and systemic antibody responses against Bordetella pertussis filamentous haemagglutinin and recombinant pertussis toxin after nasal administration with chitosan in mice. Vaccine. 1998 Dec;16(20):2039-46. PubMed PMID: 9796062.

  128. McNeela EA, O'Connor D, Jabbal-Gill I, Illum L, Davis SS, Pizza M, Peppoloni S, Rappuoli R, Mills KH. A mucosal vaccine against diphtheria: formulation of cross reacting material (CRM(197)) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2 responses following nasal delivery. Vaccine. 2000 Dec 8;19(9-10):1188-98. PubMed PMID: 11137256.

  129. Dhakal S, Renu S, Ghimire S, Lakshmanappa YS, Hogshead BT, Feliciano-Ruiz N, Lu FJ, Hogen Esch H, Krakowka S, Lee CW, Renukaradhya GJ. Mucosal immunity and protective efficacy of intranasal inactivated influenza vaccine is improved by chitosan nanoparticle delivery in pigs. Front Immunol. 2018 May 2;9. PubMed PMID: WOS:000431197100001.

  130. Rose F, Wern JE, Gavins F, Andersen P, Follmann F, Foged C. A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522. J Control Release. 2018 Feb 10;271:88-97. PubMed PMID: 29217176.

  131. Callaway E, Maxmen A. Vaccine gets cautious boost: malaria vaccine cautiously recommended for use in Africa. Nature. 2015 Oct 29;526(7575):617-8. PubMed PMID: WOS:000363832100005. English.

  132. Tinto H, D'Alessandro U, Sorgho H, Valea I, Tahita MC, Kabore W, Kiemde F, Lompo P, Ouedraogo S, Derra K, Ouedraogo F, Ouedraogo JB, Ballou WR, Cohen J, Guerra Y, Heerwegh D, Jongert E, Lapierre D, Leach A, Lievens M, Ofori-Anyinam O, Olivier A, Vekemans J, Agnandji ST, Lell B, Fernandes JF, Abossolo BP, Kabwende AL, Adegnika AA, Mordmuller B, Issifou S, Kremsner PG, Loembe MM, Bache E, Alabi A, Owusu-Agyei S, Asante KP, Boahen O, Dosoo D, Asante I, Yidana Z, Anim J, Adeniji E, Yawson AK, Kayan K, Chandramohan D, Greenwood B, Ansong D, Agbenyega T, Adjei S, Boateng HO, Rettig T, Sylverken J, Sambian D, Badu-Prepah A, Kotey A, Buabeng P, Paintsil V, Enimil A, Hamel MJ, Kariuki S, Oneko M, Odero C, Otieno K, Awino N, Muturi-Kioi V, Omoto J, Sang T, Odhiambo S, Laserson KF, Slutsker L, Otieno W, Otieno L, Otsyula N, Gondi S, Ochola J, Okoth G, Mabunde DC, Wangwe A, Otieno A, Oyieko J, Cowden J, Ogutu B, Njuguna P, Marsh K, Akoo P, Kerubo C, Maingi C, Bejon P, Olotu A, Chilengi R, Tsofa B, Lang T, Gitaka J, Awuondo K, Martinson F, Hoffman I, Mvalo T, Kamthunzi P, Nkomo R, Tembo T, Tegha G, Chawinga C, Banda T, Khan S, Mwambakulu S, Mzembe E, Sacarlal J, Aide P, Madrid L, Mand- jate S, Aponte JJ, Bulo H, Massora S, Varela E, Macete E, Alonso P, Lusingu J, Gesase S, Malabeja A, Abdul O, Mahende C, Liheluka E, Lemnge M, Theander TG, Drakeley C, Mbwana J, Olomi R, Mmbando B, Abdulla S, Salim N, Mtoro A, Ahmed S, Hamad A, Kafuruki S, Minja R, Tanner M, Maganga M, Mdemu A, Gwandu C, Mohammed A, Kaslow D, Leboulleux D, Savarese B, Schel- lenberg D, Partnership RSCT. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015 Jul 4;386(9988):31-45. PubMed PMID: WOS:000357519400026.

  133. Neafsey DE, Juraska M, Bedford T, Benkeser D, Valim C, Griggs A, Lievens M, Abdulla S, Adjei S, Agbenyega T, Agnandji ST, Aide P, Anderson S, Ansong D, Aponte JJ, Asante KP, Bejon P, Birkett AJ, Bruls M, Connolly KM, D'Alessandro U, Dobano C, Gesase S, Greenwood B, Grimsby J, Tinto H, Hamel MJ, Hoffman I, Kamthunzi P, Kariuki S, Kremsner PG, Leach A, Lell B, Lennon NJ, Lu- singu J, Marsh K, Martinson F, Molel JT, Moss EL, Njuguna P, Ockenhouse CF, Ogutu BR, Otieno W, Otieno L, Otieno K, Owusu-Agyei S, Park DJ, Pelle K, Robbins D, Russ C, Ryan EM, Sacarlal J, Sogoloff B, Sorgho H, Tanner M, Theander T, Valea I, Volkman SK, Yu Q, Lapierre D, Birren BW, Gilbert PB, Wirth DF. Genetic diversity and protective efficacy of the RTS,S/AS01 malaria vaccine. N Engl J Med. 2015 Nov 19;373(21):2025-37. PubMed PMID: WOS:000364957700008. English.

  134. Moorthy VS, Newman RD, Okwo-Bele JM. Malaria vaccine technology roadmap. Lancet. 2013 Nov 23;382(9906):1700-1. PubMed PMID: 24239252.

  135. Collins KA, Snaith R, Cottingham MG, Gilbert SC, Hill AVS. Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine. Sci Rep. 2017 Apr 19;7:46621. PubMed PMID: 28422178. PMCID: PMC5395940.

  136. Begley CG, Ellis LM. Drug development: raise standards for preclinical cancer research. Nature. 2012 Mar 28;483(7391):531-3. PubMed PMID: 22460880.

  137. Aarts AA, Anderson JE, Anderson CJ, Attridge PR, Attwood A, Axt J, Babel M, Bahnik S, Baranski E, Barnett-Cowan M, Bartmess E, Beer J, Bell R, Bentley H, Beyan L, Binion G, Borsboom D, Bosch A, Bosco FA, Bowman SD, Brandt MJ, Braswell E, Brohmer H, Brown BT, Brown K, Bruning J, Calhoun-Sauls A, Callahan SP, Chagnon E, Chandler J, Chartier CR, Cheung F, Christopherson CD, Cillessen L, Clay R, Cleary H, Cloud MD, Cohn M, Cohoon J, Columbus S, Cordes A, Costantini G, Alvarez LDC, Cremata E, Crusius J, DeCoster J, DeGaetano MA, Della Penna N, den Bezemer B, Deserno MK, Devitt O, Dewitte L, Dobolyi DG, Dodson GT, Donnellan MB, Donohue R, Dore RA, Dorrough A, Dreber A, Dugas M, Dunn EW, Easey K, Eboigbe S, Eggleston C, Embley J, Epskamp S, Errington TM, Estel V, Farach FJ, Feather J, Fedor A, Fernandez-Castilla B, Fiedler S, Field JG, Fitneva SA, Flagan T, Forest AL, Forsell E, Foster JD, Frank MC, Frazier RS, Fuchs H, Gable P, Galak J, Galliani EM, Gampa A, Garcia S, Gazarian D, Gilbert E, Giner-Sorolla R, Gl kner A, Goellner L, Goh JX, Goldberg R, Goodbourn PT, Gordon-McKeon S, Gorges B, Gorges J, Goss J, Graham J, Grange JA, Gray J, Hartgerink C, Hartshorne J, Hasselman F, Hayes T, Heikensten E, Henninger F, Hodsoll J, Holubar T, Hoogendoorn G, Humphries DJ, Hung COY, Immelman N, Irsik VC, Jahn G, Jakel F, Jekel M, Johannesson M, Johnson LG, Johnson DJ, Johnson KM, Johnston WJ, Jonas K, Joy-Gaba JA, Kappes HB, Kelso K, Kidwell MC, Kim SK, Kirkhart M, Kleinberg B, Knezevic G, Kolorz FM, Kossakowski JJ, Krause RW, Krijnen J, Kuhlmann T, Kunkels YK, Kyc MM, Lai CK, Laique A, Lakens D, Lane KA, Lassetter B, Lazarevic LB, LeBel EP, Lee KJ, Lee M, Lemm K, Levitan CA, Lewis M, Lin L, Lin S, Lippold M, Loureiro D, Luteijn I, Mackinnon S, Mainard HN, Marigold DC, Martin DP, Martinez T, Masicampo EJ, Matacotta J, Mathur M, May M, Mechin N, Mehta P, Meixner J, Melinger A, Miller JK, Miller M, Moore K, Moschl M, Motyl M, Muller SM, Munafo M, Neijenhuijs KI, Nervi T, Nicolas G, Nilsonne G, Nosek BA, Nuijten MB, 0lsson C, 0sborne C, 0stkamp L, Pavel M, Penton-Voak IS, Perna 0, Pernet C, Perugini M, Pipitone RN, Pitts M, Plessow F, Prenoveau JM, Rahal RM, Ratliff KA, Reinhard D, Renkewitz F, Ricker AA, Rigney A, Rivers AM, Roebke M, Rutchick AM, Ryan RS, Sahin 0, Saide A, Sandstrom GM, Santos D, Saxe R, Schlegelmilch R, Schmidt K, Scholz S, Seibel L, Selterman DF, Shaki S, Simpson WB, Sinclair HC, Skorinko JLM, Slowik A, Snyder JS, Soderberg C, Sonnleitner C, Spencer N, Spies JR, Steegen S, Stieger S, Strohminger N, Sullivan GB, Talhelm T, Tapia M, te Dorsthorst A, Thomae M, Thomas SL, Tio P, Traets F, Tsang S, Tuerlinckx F, Turchan P, Valasek M, van 't Veer AE, Van Aert R, van Assen M, van Bork R, van de Ven M, van den Bergh D, van der Hulst M, van Dooren R, van Doorn J, van Renswoude DR, van Rijn H, Vanpaemel W, Echeverria AV, Vazquez M, Velez N, Vermue M, Verschoor M, Vianello M, Voracek M, Vuu G, Wagenmakers EJ, Weerdmeester J, Welsh A, West- gate EC, Wissink J, Wood M, Woods A, Wright E, Wu S, Zeelenberg M, Zuni K, Collaboration 0S. Estimating the reproducibility of psychological science. Science. 2015 Aug 28;349(6251). PubMed PMID: W0S:000360646800042. English.

  138. Tiefenboeck P, Kim JA, Trunk F, Leroux JC. Comment on "A liposomal system capable of generating C02 bubbles to induce transient cavitation, lysosomal rupturing and cell necrosis." Angew Chem Int Edit. 2017 Sep 18;56(39):11686-9. PubMed PMID: W0S:000410810600003. English.

  139. Leroux JC. Editorial: Drug delivery: too much complexity, not enough reproducibility? Angew Chem Int Ed Engl. 2017 Nov 27;56(48):15170-1. PubMed PMID: 28967701.

REFERENZIERT VON
  1. Wang Ning, Wei Chunliu, Zhang Zina, Liu Ting, Wang Ting, Aluminum Nanoparticles Acting as a Pulmonary Vaccine Adjuvant-Delivery System (VADS) Able to Safely Elicit Robust Systemic and Mucosal Immunity, Journal of Inorganic and Organometallic Polymers and Materials, 30, 10, 2020. Crossref

  2. Liu Zonghua, Huang Linghong, Xue Wei, pH-responsive vaccine delivery systems for improving cellular immunity, Progress in Natural Science: Materials International, 30, 5, 2020. Crossref

  3. Moratin Helena, Ickrath Pascal, Scherzad Agmal, Meyer Till Jasper, Naczenski Sebastian, Hagen Rudolf, Hackenberg Stephan, Investigation of the Immune Modulatory Potential of Zinc Oxide Nanoparticles in Human Lymphocytes, Nanomaterials, 11, 3, 2021. Crossref

  4. Omidi Yadollah, Pourseif Mohammad M., Omidian Hossein, Barar Jaleh, Nanoscale Vaccines: Design, Delivery, and Applications, in Nanoengineering of Biomaterials, 2022. Crossref

  5. Chakraborty Nayanika, Jha Diksha, Roy Indrajit, Kumar Pradeep, Gaurav Shailendra Singh, Marimuthu Kalisvar, Ng Oon-Tek, Lakshminarayanan Rajamani, Verma Navin Kumar, Gautam Hemant K., Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies, Journal of Nanobiotechnology, 20, 1, 2022. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain