Abo Bibliothek: Guest
Critical Reviews™ in Immunology

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 1040-8401

ISSN Online: 2162-6472

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00079 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.24 SJR: 0.429 SNIP: 0.287 CiteScore™:: 2.7 H-Index: 81

Indexed in

Role of Treg/Th17 Imbalance, Microbiota and miRNAs in Pancreatic Cancer: Therapeutic Options

Volumen 40, Ausgabe 1, 2020, pp. 75-92
DOI: 10.1615/CritRevImmunol.2020033631
Get accessGet access

ABSTRAKT

Pancreatic cancer is one of the most lethal kinds of cancer; numerous patients die from it every year all over the word. Fewer than 5% of people with pancreatic cancer survive death and recover. Recent evidence suggests that inflammation parameters, such as Th17 cells and Tregs, affect the progression and even the diagnosis and treatment of pancreatic cancer. In the inflammation process, T lymphocytes play an essential role in inflammation intensity, and related cytokines modulate immune responses in the tumor microenvironment. Their function is to establish a balance between destructive inflammation and defense against tumor cells via immune system, and Treg/Th17 imbalance is a common problem in this cancer. The role of microbiota in the development of some cancers is clear; microbiota may also be involved in the pancreatic cancer development. All risk factors for pancreatic cancer, such as chronic pancreatitis-related to microbiota, influence the acute or chronic immune response. Some evidence has been presented regarding the role of the immune response in carcinogenesis. In addition, miRNAs are very important in suppressing and stimulating the growth of cancer cells, and a variety of them have been identified. Some miRNAs are abnormally expressed in many cancers and have main roles as post-transcriptional regulators. They show oncogenic or tumor-suppressive functions by binding to marked mRNAs. In this review, we highlight recent findings regarding the role of Treg/Th17 imbalance, microbiota functions, and miRNAs performance in pancreatic cancer. We also present the evidence regarding therapeutic options.

REFERENZEN
  1. Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol. 2016;22(44):9694. .

  2. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378(9791):607-20. .

  3. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C. GLOBOCAN 2012 v1. 0, cancer incidence and mortality worldwide. IARC CancerBase No. 11. Lyon, France: International Agency for Research on Cancer; 2013. .

  4. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-E86. .

  5. Wang Y, Springer S, Mulvey CL, Silliman N, Schaefer J, Sausen M. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med. 2015;7(293):293ra104-293ra104. .

  6. Qiu D, Katanoda K, Marugame T, Sobue T. A Joinpoint regression analysis of long-term trends in cancer mortality in Japan (1958-2004). Int J Cancer. 2009;124(2):443-48. .

  7. Xiao M, Wang Y, Gao Y. Association between Helicobacter pylori infection and pancreatic cancer development: a meta-analysis. PLoS One. 2013;8(9):e75559. .

  8. Ezzati M, Henley SJ, Lopez AD, Thun MJ. Role of smoking in global and regional cancer epidemiology: current patterns and data needs. Int J Cancer. 2005;116(6):963-71. .

  9. Kim SK, Kim H, Lee D-H, Kim T-S, Kim T, Chung C. Reversing the intractable nature of pancreatic cancer by selectively targeting ALDH-high, therapy-resistant cancer cells. PLoS One. 2013;8(10):e78130. .

  10. Bosetti C, Bertuccio P, Negri E, La Vecchia C, Zeegers MP, Boffetta P. Pancreatic cancer: overview of descriptive epidemiology. Mol Carcinog. 2012;51(1):3-13. .

  11. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. Cancer J Clin. 2005;55(2):74-108. .

  12. Zambirinis CP, Pushalkar S, Saxena D, Miller G. Pancreatic cancer, inflammation and microbiome. Int J Cancer (Sudbury, MA). 2014;20(3):195. .

  13. Moisset X, Perie M, Pereira B, Dumont E, Lebrun-Frenay C, Lesage F-X. Decreased prevalence of cancer in patients with multiple sclerosis: a case-control study. PLoS One. 2017;12(11):e0188120. .

  14. Tarhini AA, Lin Y, Zahoor H, Shuai Y, Butterfield LH, Ringquist S. Pro-inflammatory cytokines predict relapse-free survival after one month of interferon-a but not observation in intermediate risk melanoma patients. PLoS One. 2015;10(7):e0132745. .

  15. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell J. 2011;144(5):646-74. .

  16. Wang P, Meng Z, Chen Z, Lin J, Ping B, Wang L. Diagnostic value and complications of fine needle aspiration for primary liver cancer and its influence on the treatment outcome-a study based on 3011 patients in China. EJSO. 2008;34(5):541-46. .

  17. Garrett WS. Cancer and the microbiota. Science J. 2015; 348(6230):80-86. .

  18. Fischer SE. RNA interference and microRNA-mediated silencing. Curr Protoc Mol Biol. 2015;112:26.1.1-5. .

  19. Jafarinia M, Lotfi N, Ganjalikhani-hakmi M, Rezaei A. Regulatory T cells in colorectal cancer. Altered Immunoregul Hum Dis. 2018;1(1): 5-10. .

  20. Whiteside TL. What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol. 2012;22(4): 327-34. .

  21. Bishayee A. The role of inflammation and liver cancer. Adv Exp Med Biol. 2014;816:401-35. .

  22. Majumder S, Takahashi N, Chari ST. Autoimmune pancreatitis. Dig Dis Sci. 2017;62(7):1762-69. .

  23. Hart PA, Zen Y, Chari ST. Recent advances in autoimmune pancreatitis. Eur J Gastroenterol Hepatol. 2015;149(1):39-51. .

  24. Yang D, Forsmark CE. Chronic pancreatitis. Curr Opin Gastroenterol. 2017;33(5):396-403. .

  25. Andersen DK, Korc M, Petersen GM, Eibl G, Li D, Rickels MR. Diabetes, pancreatogenic diabetes, and pancreatic cancer. Diabetes. 2017;66(5):1103-10. .

  26. Hausmann S, Kong B, Michalski C, Erkan M, Friess H. The role of inflammation in pancreatic cancer. Adv Exp Med Biol. 2014;816:129-51. .

  27. Zhao X, Wang X, Fang L, Lan C, Zheng X, Wang Y. A combinatorial strategy using YAP and pan-RAF inhibitors for treating KRAS-mutant pancreatic cancer. Cancer Lett. 2017;402:61-70. .

  28. Halbrook CJ, Lyssiotis CA. Employing metabolism to improve the diagnosis and treatment of pancreatic cancer. Cancer Cell. 2017;31(1):5-19. .

  29. Gukovsky I, Li N, Todoric J, Gukovskaya A, Karin M. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144(6):1199-209.e4. .

  30. Ansari D, Carvajo M, Bauden M, Andersson R. Pancreatic cancer stroma: controversies and current insights. Scand J Gastroenterol. 2017;52(6-7):641-46. .

  31. Lee JW, Komar CA, Bengsch F, Graham K, Beatty GL. Genetically engineered mouse models of pancreatic cancer: the KPC model (LSL-Kras(G12D/+) ;LSL-Trp53(R172H/+); Pdx-1-Cre), its variants, and their application in immuno-oncology drug discovery. Curr Protoc Pharmacol. 2016;73:14.39.1-14.39.20. .

  32. Bournet B, Buscail C, Muscari F, Cordelier P, Buscail L. Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: hopes and realities. Eur J Cancer (Oxford, UK: 1990). 2016;54:75-83. .

  33. Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet (London, UK). 2016;388(10039):73-85. .

  34. Robinson RT. T Cell production of GM-CSF protects the host during experimental tuberculosis. MBio. 2017; 8(6):188-189. .

  35. Zambirinis CP, Pushalkar S, Saxena D, Miller G. Pancreatic cancer, inflammation, and microbiome. Cancer J. 2014;20(3):195-202. .

  36. Noster R, Riedel R, Mashreghi MF, Radbruch H, Harms L, Haftmann C. IL-17 and GM-CSF expression are antag-onistically regulated by human T helper cells. Sci Transl Med. 2014;6(241):241ra80. .

  37. Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exper Med. 2017;214(3):579-96. .

  38. Mantovani A. Molecular pathways linking inflammation and cancer. Curr Mol Med. 2010;10(4):369-73. .

  39. Asadzadeh Z, Mohammadi H, Safarzadeh E, Hemmatzadeh M, Mahdian-Shakib A, Jadidi-Niaragh F. The paradox of Th17 cell functions in tumor immunity. Cellular Immunol. 2017;322:15-25. .

  40. Guery L, Hugues S. Th17 Cell plasticity and functions in cancer immunity. BioMed Res Int. 2015;2015:314620. .

  41. Feng S, Chen XM, Wang JF, Xu XQ. Th17 cells associated cytokines and cancer. European Rev Med Pharmacol Sci. 2016;20(19):4032-40. .

  42. Song Y, Yang JM. Role of interleukin (IL)-17 and T-helper (Th)17 cells in cancer. Biochem Biophys Res Commun. 2017;493(1):1-8. .

  43. Amatya N, Garg AV, Gaffen SL. IL-17 Signaling: the Yin and the Yang. Trends Immunol. 2017;38(5):310-22. .

  44. Ziai J, Gilbert HN, Foreman O, Eastham-Anderson J, Chu F, Huseni M. CD8+ T cell infiltration in breast and colon cancer: a histologic and statistical analysis. PLoS One. 2018;13(1):e0190158. .

  45. Joerger M, Finn SP, Cuffe S, Byrne AT, Gray SG. The IL-17-Th1/Th17 pathway: an attractive target for lung cancer therapy? Expert Op Therap Targets. 2016;20(11):1339-56. .

  46. Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71(4):1263-71. .

  47. Limagne E, Thibaudin M, Euvrard R, Berger H, Chalons P, Vegan F. Sirtuin-1 activation controls tumor growth by impeding Th17 differentiation via STAT3 deacetylation. Cell Rep. 2017;19(4):746-59. .

  48. Chen X, Wang J, Wang R, Su Q, Luan J, Huang H, Zhou P, Liu J, Xu X. Th1-, Th2-, and Th17-associated cytokine expression in hypopharyngeal carcinoma and clinical significance. European Arch Oto-Rhino-Laryngol. 2016;273(2):431-38. .

  49. Li H, Zhao H, Yu J, Su Y, Cao S, An X, Ren X. Increased prevalence of regulatory T cells in the lung cancer microenvironment: a role of thymic stromal lymphopoietin. Cancer Immunol Immunother. 2011;60(11):1587-96. .

  50. Choi Y, Kim JW, Nam KH, Han SH, Kim JW, Ahn SH. Systemic inflammation is associated with the density of immune cells in the tumor microenvironment of gastric cancer. Gastric Cancer. 2017;20(4):602-11. .

  51. Heier I, Hofgaard PO, Brandtzaeg P, Jahnsen FL, Karls- son M. Depletion of CD4+ CD25+ regulatory T cells inhibits local tumour growth in a mouse model of B cell lymphoma. Clin Exp Immunol. 2008;152(2):381-87. .

  52. Chen K, Kolls JK. Interluekin-17A (IL17A). Gene. 2017; 614:8-14. .

  53. Whiteside TL. FOXP3+ Treg as a therapeutic target for promoting anti-tumor immunity. Expert Op Therap Targets. 2018;22(4):353-63. .

  54. Bedoya SK, Lam B, Lau K, Larkin 3rd J. Th17 cells in immunity and autoimmunity. Clin Dev Immunol. 2013;2013:986789. .

  55. He S, Fei M, Wu Y, Zheng D, Wan D, Wang L. Distribution and clinical significance of Th17 cells in the tumor microenvironment and peripheral blood of pancreatic cancer patients. Int J Mol Sci. 2011;12(11):7424-37. .

  56. Kurschus FC, Moos S. IL-17 for therapy. J Dermatol Sci. 2017;87(3):221-27. .

  57. Abusleme L, Moutsopoulos NM. IL-17: overview and role in oral immunity and microbiome. Oral Dis. 2017;23(7):854-65. .

  58. Beringer A, Noack M, Miossec P. IL-17 in chronic inflammation: from discovery to targeting. Trends Mol Med. 2016;22(3):230-41. .

  59. Blake SJ, Teng MW. Role of IL-17 and IL-22 in autoimmunity and cancer. Actas Dermo-Sifiliograficas. 2014;105 (Suppl 1):41-50. .

  60. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, Verstegen NJ, Ciampricotti M, Hawinkels LJ, Jonkers J, de Visser KE. IL-17-producing gamma-delta T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522(7556):345-48. .

  61. Cao Y, Zhao D, Li P, Wang L, Qiao B, Qin X. MicroR-NA-181a-5p Impedes IL-17-induced nonsmall cell lung cancer proliferation and migration through targeting VCAM-1. Cell Physiol Biochem. 2017;42(1):346-56. .

  62. Fabre J, Giustiniani J, Garbar C, Antonicelli F, Merrouche Y, Bensussan A. Targeting the tumor microenvironment: the protumor effects of IL-17 related to cancer type. Int J Mol Sci. 2016;17(9):1433. .

  63. McAllister F, Leach SD. Targeting IL-17 for pancreatic cancer prevention. Oncotarget. 2014;5(20):9530-31. .

  64. Chu LC, Goggins MG, Fishman EK. Diagnosis and detection of pancreatic cancer. Cancer J. 2017;23(6):333-42. .

  65. Camporeale A, Poli V. IL-6, IL-17 and STAT3: a holy trinity in auto-immunity? Frontiers Biosci (Landmark edition). 2012;17:2306-26. .

  66. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annual Rev Immunol. 2009;27:485-517. .

  67. Gu C, Wu L, Li X. IL-17 family: cytokines, receptors and signaling. Cytokine. 2013;64(2):477-85. .

  68. Qian X, Chen H, Wu X, Hu L, Huang Q, Jin Y. Interleukin-17 acts as double-edged sword in anti-tumor immunity and tumorigenesis. Cytokine. 2017;89:34-44. .

  69. Wu HH, Hwang-Verslues WW, Lee WH, Huang CK, Wei PC, Chen CL, Shew JY, Lee EY, Jeng YM, Tien YW, Ma C. Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. J Exper Med. 2015;212(3):333-49. .

  70. Nirula A, Nilsen J, Klekotka P, Kricorian G, Erondu N, Towne JE. Effect of IL-17 receptor A blockade with brodalumab in inflammatory diseases. Rheumatology (Oxford, UK). 2016;55(Suppl 2):ii43-ii55. .

  71. Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27(1):109-18. .

  72. Goschl L, Scheinecker C, Bonelli M. Treg cells in auto-immunity: from identification to Treg-based therapies. Semin Immunopathol. 2019;41(3):301-14. .

  73. Wolf D, Sopper S, Pircher A, Gastl G, Wolf AM. Treg(s) in cancer: friends or foe? J Cell Physiol. 2015;230(11):2598-605. .

  74. Manz MG. Flt3L, DCs, and NTregs: team contra GVHD? Blood. 2009;113(25):6267-8. .

  75. Whiteside TL, Schuler P, Schilling B. Induced and natural regulatory T cells in human cancer. Expert Opin Biol Ther. 2012;12(10):1383-97. .

  76. Wang H, Franco F, Ho PC. Metabolic regulation of tregs in cancer: opportunities for immunotherapy. Trends Cancer. 2017;3(8):583-92. .

  77. Richards DM, Delacher M, Goldfarb Y, Kagebein D, Hofer AC, Abramson J. Treg cell differentiation: from thymus to peripheral tissue. Prog Mol Biol Transl Sci. 2015;136:175-205. .

  78. Li X, Zheng Y. Regulatory T cell identity: formation and maintenance. Trends Immunol. 2015;36(6):344-53. .

  79. Liu J, Zhang H, Jia L, Sun H. Effects of Treg cells and IDO on human epithelial ovarian cancer cells under hypoxic conditions. Mol Med Rep. 2015;11(3):1708-14. .

  80. Vizio B, Novarino A, Giacobino A, Cristiano C, Prati A, Ciuffreda L, Montrucchio G, Bellone G. Potential plasticity of T regulatory cells in pancreatic carcinoma in relation to disease progression and outcome. Exper Therap Med. 2012;4(1):70-78. .

  81. He B, Wu L, Xie W, Shao Y, Jiang J, Zhao Z. The imbalance of Th17/Treg cells is involved in the progression of nonalcoholic fatty liver disease in mice. BMC Immunol. 2017;18(1):33. .

  82. Wang X, Wang L, Mo Q, Dong Y, Wang G, Ji A. Changes of Th17/Treg cell and related cytokines in pancreatic cancer patients. Int J Clin Exp Pathol. 2015;8(5):5702-8. .

  83. Wei L, Liu M, Xiong H, Peng B. Up-regulation of IL-23 expression in human dental pulp fibroblasts by IL-17 via activation of the NF-kappaB and MAPK pathways. Int Endodon J. 2018;51(6):622-31. .

  84. Zeng Q, Sun X, Xiao L, Xie Z, Bettini M, Deng T. A unique population: adipose-resident regulatory T cells. Front Immunol. 2018;9:2075. .

  85. Omenetti S, Pizarro TT. The Treg/Th17 axis: a dynamic balance regulated by the gut microbiome. Front Immunol. 2015;6:639. .

  86. Barbi J, Pardoll D, Pan F. Metabolic control of the Treg/ Th17 axis. Immunol Rev. 2013;252(1):52-77. .

  87. Jiang X, Liu L, Sun J, Yang J, Xiang D, Yang Y. Baicalin inhibits IgG production by regulating Treg/Th17 axis in a mouse model of red blood cell transfusion. Int Immuno-pharmacol. 2019;66:282-87. .

  88. Yin X, Liu B, Wei H, Wu S, Guo L, Xu F. Activation of the Notch signaling pathway disturbs the CD4(+)/CD8(+), Th17/Treg balance in rats with experimental autoimmune uveitis. Inflamm Res. 20191;68(9):761-74. .

  89. Knochelmann HM, Dwyer CJ, Bailey SR, Amaya SM, Elston DM, Mazza-McCrann JM. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol. 2018;15(5):458-69. .

  90. Li Q, Li Q, Chen J, Liu Y, Zhao X, Tan B. Prevalence of Th17 and Treg cells in gastric cancer patients and its correlation with clinical parameters. Oncol Reps. 2013;30(3):1215-22. .

  91. Jin Z, You J, Wang HT. The role of the balance between Th17 and Treg in liver disease. Zhonghua Gan Zang Bing Za Zhi = Zhonghua Ganzangbing Zazhi = Chinese J Hepatol. 2017;25(8):637-40 (in Chinese). .

  92. Zhang Y, Wang ZC, Zhang ZS, Chen F. MicroRNA-155 regulates cervical cancer via inducing Th17/Treg imbalance. Eur Rev Med Pharmacol Sci. 2018;22(12):3719-26. .

  93. Duan MC, Han W, Jin PW, Wei YP, Wei Q, Zhang LM. Disturbed Th17/Treg balance in patients with non-small cell lung cancer. Inflammation. 2015;38(6):2156-65. .

  94. Wu S, Wang W, Le Q. All-trans retinoic acid regulates the balance of Treg-Th17 cells through ERK and P38 signaling pathway. Iran J Immunol. 2019;16(1):1-10. .

  95. Hoe E, Anderson J, Nathanielsz J, Toh ZQ, Marimla R, Balloch A. The contrasting roles of Th17 immunity in human health and disease. Microbiol Immunol. 2017;61(2):49-56. .

  96. Ren J, Li B. The functional stability ofFOXP3 and RORgammat in Treg and Th17 and their therapeutic applications. Adv Protein Chem Structural Biol. 2017;107:155-89. .

  97. Hernandez P, Gronke K, Diefenbach A. A catch-22: interleukin-22 and cancer. Eur J Immunol. 2018;48(1):15-31. .

  98. Guendisch U, Weiss J, Ecoeur F, Riker JC, Kaupmann K, Kallen J. Pharmacological inhibition of ROR gamma t suppresses the Th17 pathway and alleviates arthritis in vivo. PLoS One. 2017;12(11):e0188391. .

  99. Faveeuw C, Fougeray S, Angeli V, Fontaine J, Chinetti G, Gosset P. Peroxisome proliferator-activated receptor gamma activators inhibit interleukin-12 production in murine dendritic cells. FEBS Lett. 2000;486(3):261-66. .

  100. Delerive P, Monte D, Dubois G, Trottein F, Fruchart-Najib J, Mariani J. The orphan nuclear receptor ROR alpha is a negative regulator of the inflammatory response. EMBO Rep. 2001;2(1):42-48. .

  101. Delerive P, Chin WW, Suen CS. Identification of Rever-b(alpha) as a novel ROR(alpha) target gene. J Bio Chem. 2002;277(38):35013-18. .

  102. Wang X, Lang M, Zhao T, Feng X, Zheng C, Huang C. Cancer-FOXP3 directly activated CCL5 to recruit FOXP3(+)Treg cells in pancreatic ductal adenocarcinoma. Oncogene. 2017;36(21):3048-58. .

  103. Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity. 2017;46(4):562-76. .

  104. Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut. 2018;67(1):120-27. .

  105. Holzer P. Neuropeptides, microbiota, and behavior. Int Rev Neurobiol. 2016;131:67-89. .

  106. Ertz-Archambault N, Keim P, Von Hoff D. Microbiome and pancreatic cancer: a comprehensive topic review of literature. World J Gastroenterol. 2017;23(10):1899-908. .

  107. Dale OT, Sood S, Shah KA, Han C, Rapozo D, Mehanna H. Long-term survival outcomes in patients with surgically treated oropharyngeal cancer and defined human papilloma virus status. J Laryngol Otol. 2016;130(11):1048-53. .

  108. Wroblewski LE, Peek Jr RM. Helicobacter pylori, cancer, and the gastric microbiota. Adv Exper Med Biol. 2016;908:393-408. .

  109. Wang F, Meng W, Wang B, Qiao L. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 2014;345(2):196-202. .

  110. Tsukamoto T, Nakagawa M, Kiriyama Y, Toyoda T, Cao X. Prevention of gastric cancer: eradication of helicobacter pylori and beyond. Int J Mol Sci. 2017;18(8):1699. .

  111. Lee YC, Chiang TH, Chou CK, Tu YK, Liao WC, Wu MS. Association between Helicobacter pylori eradication and gastric cancer incidence: a systematic review and meta-analysis. Gastroenterology. 2016;150(5):1113-24. .

  112. McClain MS, Beckett AC, Cover TL. Helicobacter pylori vacuolating toxin and gastric cancer. Toxins. 2017;9(10): 316. .

  113. Signoretti M, Roggiolani R, Stornello C, Delle Fave G, Capurso G. Gut microbiota and pancreatic diseases. Minerva Gastroenterol Dietol. 2017;63(4):399-410. .

  114. Zhou B, Xu JW, Cheng YG, Gao JY, Hu SY, Wang L. Early detection of pancreatic cancer: where are we now and where are we going? Int J Cancer. 2017;141(2):231-41. .

  115. Michaud DS, Izard J. Microbiota, oral microbiome, and pancreatic cancer. Cancer J. 2014;20(3):203-6. .

  116. Olson SH, Satagopan J, Xu Y, Ling L, Leong S, Orlow I. The oral microbiota in patients with pancreatic cancer, patients with IPMNs, and controls: a pilot study. Cancer Causes Control. 2017;28(9):959-69. .

  117. Bracci PM. Oral health and the oral microbiome in pancreatic cancer: an overview of epidemiological studies. Cancer J. 2017;23(6):310-14. .

  118. Chen J, Domingue JC, Sears CL. Microbiota dysbiosis in select human cancers: evidence of association and causality. Semin Immunol. 2017;32:25-34. .

  119. Wang C, Li J. Pathogenic microorganisms and pancreatic cancer. Gastrointest Tumors. 2015;2(1):41-47. .

  120. Lanki MA, Seppanen HE, Mustonen HK, Bockelman C, Juuti AT, Hagstrom JK. Toll-like receptor 2 and Toll-like receptor 4 predict favorable prognosis in local pancreatic cancer. Tumour Biol. 2018;40(9):1010428318801188. .

  121. Vaz J, Andersson R. Intervention on toll-like receptors in pancreatic cancer. World J Gastroenterol. 2014;20(19): 5808-17. .

  122. Mima K, Nakagawa S, Sawayama H, Ishimoto T, Imai K, Iwatsuki M. The microbiome and hepatobiliary-pancreatic cancers. Cancer Lett. 2017;402:9-15. .

  123. Qadir MI, Faheem A. miRNA: a diagnostic and therapeutic tool for pancreatic cancer. Crit Rev Eukary Gene Expression. 2017;27(3):197-204. .

  124. Yonemori K, Kurahara H, Maemura K, Natsugoe S. MicroRNA in pancreatic cancer. J Human Genet. 2017;62(1): 33-40. .

  125. Li F, Liang J, Bai L. MicroRNA-449a functions as a tumor suppressor in pancreatic cancer by the epigenetic regulation of ATDC expression. Biomed Pharmacother. 2018;103:782-89. .

  126. Chaudhary AK, Mondal G, Kumar V, Kattel K, Mahato RI. Chemosensitization and inhibition of pancreatic cancer stem cell proliferation by overexpression of microRNA-205. Cancer Lett. 2017;402:1-8. .

  127. ZhuZ-M, Xu Y-F, Su Q-J, Du J-D, Tan X-L, Tu Y-L. Prognostic significance of microRNA-141 expression and its tumor suppressor function in human pancreatic ductal adenocarcinoma. Mol Cell Biochem. 2014;388(1-2): 39-49. .

  128. Azizi M, Teimoori-Toolabi L, Arzanani MK, Azad- manesh K, Fard-Esfahani P, Zeinali S. MicroRNA-148b and microRNA-152 reactivate tumor suppressor genes through suppression of DNA methyltransferase-1 gene in pancreatic cancer cell lines. Cancer Biol Ther. 2014;15(4):419-27. .

  129. Xu L, Li Q, Xu D, Wang Q, An Y, Du Q. hsa-miR-141 downregulates TM4SF1 to inhibit pancreatic cancer cell invasion and migration. Int J Oncol. 2014;44(2):459-66. .

  130. Zhao G, Zhang J-G, Shi Y, Qin Q, Liu Y, Wang B. MiR-130b is a prognostic marker and inhibits cell proliferation and invasion in pancreatic cancer through targeting STAT3. PLoS One. 2013;8(9):e73803. .

  131. Zhao G, Zhang J-G, Shi Y, Qin Q, Liu Y, Wang Bl. Correction: MiR-130b is a prognostic marker and inhibits cell proliferation and invasion in pancreatic cancer through targeting STAT3. PLoS One. 2013;8(9):e73803. .

  132. Jiang J, Yu C, Chen M, Zhang H, Tian S, Sun C. Reduction of miR-29c enhances pancreatic cancer cell migration and stem cell-like phenotype. Oncotarget. 2015;6(5):2767. .

  133. Park J-K, Lee EJ, Esau C, Schmittgen TD. Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas. 2009;38(7):e190-e199. .

  134. Wang P, Zhu C-F, Ma M-Z, Chen G, Song M, Zeng Z-L. Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer. Oncotarget. 2015;6(25):21148. .

  135. Song W, Li Q, Wang L, Wang L. Modulation of FoxO1 expression by miR-21 to promote growth of pancreatic ductal adenocarcinoma. Cellular Physiol Biochem. 2015;35(1):184-90. .

  136. Dong J, Zhao Y-P, Zhou L, Zhang T-P, Chen G. Bcl-2 upregulation induced by miR-21 via a direct interaction is associated with apoptosis and chemoresistance in MIA PaCa-2 pancreatic cancer cells. Arch Med Res. 2011;42(1):8-14. .

  137. Liu N, Sun Y-Y, Zhang X-W, Chen S, Wang Y, Zhang Z-X. Oncogenic miR-23a in pancreatic ductal adenocar-cinogenesis via inhibiting APAF1. Digestive Diseases Sci. 2015;60(7):2000-8. .

  138. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9(6):582-89. .

  139. Deng J, He M, Chen L, Chen C, Zheng J, Cai Z. The loss of miR-26a-mediated post-transcriptional regulation of cyclin E2 in pancreatic cancer cell proliferation and decreased patient survival. PLoS One. 2013;8(10):e76450. .

  140. Zhao G, Zhang J-G, Liu Y, Qin Q, Wang B, Tian K. miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKal. Mol Cancer Therap. 2013;12(1):83-93. .

  141. Gao L, Yang Y, Xu H, Liu R, Li D, Hong H. MiR-335 functions as a tumor suppressor in pancreatic cancer by targeting OCT4. Tumor Biol. 2014;35(8):8309-18. .

  142. Peng JF, Zhuang YY, Huang FT, Zhang SN. Noncoding RNAs and pancreatic cancer. World J Gastroenterol. 2016;22(2):801-14. .

  143. Yang J, Zhang HF, Qin CF. MicroRNA-217 functions as a prognosis predictor and inhibits pancreatic cancer cell proliferation and invasion via targeting E2F3. European Rev Med Pharmacol Sci. 2017;21(18):4050-57. .

  144. Suzuki HI, Katsura A, Mihira H, Horie M, Saito A, Miyazono K. Regulation of TGF-beta-mediated endothelial-mesenchymal transition by microRNA-27. J Biochem. 2017;161(5):417-20. .

  145. Karmakar S, Kaushik G, Nimmakayala R, Rachagani S, Ponnusamy MP, Batra SK. MicroRNA regulation of K-Ras in pancreatic cancer and opportunities for therapeutic intervention. Semin Cancer Biol. 2019;54:63-71. .

  146. Chivukula RR, Shi G, Acharya A, Mills EW, Zeitels LR, Anandam JL. An essential mesenchymal function for miR-143/145 in intestinal epithelial regeneration. Cell. 2014;157(5):1104-16. .

  147. Zhao L, Li C, Liu F, Zhao Y, Liu J, Hua Y, Liu J, Huang J, Ge C. A blockade of PD-L1 produced antitumor and antimetastatic effects in an orthotopic mouse pancreatic cancer model via the PI3K/Akt/mTOR signaling pathway. OncoTargets Ther. 2017;10:2115-26. .

  148. Liu S, Li X, Wu Y, Duan R, Zhang J, Du F. Effects of vaspin on pancreatic beta cell secretion via PI3K/ Akt and NF-kappaB signaling pathways. PLoS One. 2017;12(12):e0189722. .

  149. Wang S, Lei Y, Cai Z, Ye X, Li L, Luo X. Girdin regulates the proliferation and apoptosis of pancreatic cancer cells via the PI3K/Akt signalling pathway. Onco Rep. 2018;40(2):599-608. .

  150. Ebrahimi S, Hosseini M, Shahidsales S, Maftouh M, Ferns GA, Ghayour-Mobarhan M. Targeting the Akt/ PI3K signaling pathway as a potential therapeutic strategy for the treatment of pancreatic cancer. Curr Med Chem. 2017;24(13):1321-31. .

  151. Li F, Xu JW, Wang L, Liu H, Yan Y, Hu SY. MicroR-NA-221-3p is up-regulated and serves as a potential bio-marker in pancreatic cancer. Artificial Cells, Nanomed Biotechnol. 2018;46(3):482-87. .

  152. Zhuo M, Yuan C, Han T, Cui J, Jiao F, Wang L. A novel feedback loop between high MALAT-1 and low miR-200c-3p promotes cell migration and invasion in pancreatic ductal adenocarcinoma and is predictive of poor prognosis. BMC Cancer. 2018;18(1):1032. .

  153. Eliasson L. The small RNA miR-375 a pancreatic islet abundant miRNA with multiple roles in endocrine beta cell function. Mol Cell Endocrinol. 2017;456:95-101. .

  154. Li L, Li B, Chen D, Liu L, Huang C, Lu Z. miR-139 and miR-200c regulate pancreatic cancer endothelial cell migration and angiogenesis. Onco Rep. 2015;34(1):51-58. .

  155. Groner B, von Manstein V. Jak Stat signaling and cancer: opportunities, benefits and side effects of targeted inhibition. Mol Cellular Endocrinol. 2017;451:1-14. .

  156. Zhang Y, Tang X, Shi M, Wen C, Shen B. MiR-216a decreases MALAT1 expression, induces G2/M arrest and apoptosis in pancreatic cancer cells. Biochem Biophys Res Commun. 2017;483(2):816-22. .

  157. Lu J, Li X, Wang F, Guo Y, Huang Y, Zhu H. YB-1 expres-sion promotes pancreatic cancer metastasis that is inhibited by microRNA-216a. Exp Cell Res. 2017;359(2):319-26. .

  158. Zhao G, Zhang JG, Shi Y, Qin Q, Liu Y, Wang B. MiR-130b is a prognostic marker and inhibits cell proliferation and invasion in pancreatic cancer through targeting STAT3. PLoS One. 2013;8(9):e73803. .

  159. Fukuhisa H, Seki N, Idichi T, Kurahara H, Yamada Y, Toda H. Gene regulation by antitumor miR-130b-5p in pancreatic ductal adenocarcinoma: the clinical significance of oncogenic EPS8. J Hum Genet. 2019;64(6):521-34. .

  160. Patel GK, Khan MA, Bhardwaj A, Srivastava SK, Zubair H, Patton MC, Singh S, Singh AP. Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK. Br J Cancer. 2017;116(5):609-19. .

  161. Zhang JQ, Chen S, Gu JN, Zhu Y, Zhan Q, Cheng J. MicroRNA-300 promotes apoptosis and inhibits proliferation, migration, invasion and epithelial-mesenchymal transition via the Wnt/beta-catenin signaling pathway by targeting CUL4B in pancreatic cancer cells. J Cell Biochem. 2018;119(1):1027-40. .

  162. Cui Z, Liu G, Kong D. miRNA27a promotes the proliferation and inhibits apoptosis of human pancreatic cancer cells by Wnt/beta-catenin pathway. Onco Rep. 2018;39(2):755-63. .

  163. Zhang L, Yao J, Li W, Zhang C. Micro-RNA-21 regulates cancer-associated fibroblast-mediated drug resistance in pancreatic cancer. Oncol Res. 2018;26(6):827-35. .

  164. Sicard F, Gayral M, Lulka H, Buscail L, Cordelier P. Targeting miR-21 for the therapy of pancreatic cancer. Mol Ther. 2013;21(5):986-94. .

  165. Wei X, Wang W, Wang L, Zhang Y, Zhang X, Chen M. MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDCD4. Cancer Med. 2016;5(4):693-702. .

  166. Takiuchi D, Eguchi H, Nagano H, Iwagami Y, Tomimaru Y, Wada H, Kawamoto K, Kobayashi S, Marubashi S, Tanemura M, Mori M. Involvement of microRNA-181b in the gemcitabine resistance of pancreatic cancer cells. Pancreatology. 2013;13(5):517-23. .

  167. Zhao Q, Chen S, Zhu Z, Yu L, Ren Y, Jiang M. miR-21 promotes EGF-induced pancreatic cancer cell proliferation by targeting Spry2. Cell Death Dis. 2018;9(12):1157. .

  168. Huang C, Li H, Wu W, Jiang T, Qiu Z. Regulation of miR-155 affects pancreatic cancer cell invasiveness and migration by modulating the STAT3 signaling pathway through SOCS1. Oncol Rep. 2013;30(3):1223-30. .

  169. Mikamori M, Yamada D, Eguchi H, Hasegawa S, Kishimoto T, Tomimaru Y. MicroRNA-155 controls exo-some synthesis and promotes gemcitabine resistance in pancreatic ductal adenocarcinoma. Sci Rep. 2017;7:42339. .

  170. Wang X, Wang L, Mo Q, Jia A, Dong Y, Wang G. A positive feedback loop of p53/miR-19/TP53INP1 modulates pancreatic cancer cell proliferation and apoptosis. Oncol Rep. 2016;35(1):518-23. .

  171. Chiorean EG, Coveler AL. Pancreatic cancer: optimizing treatment options, new, and emerging targeted therapies. Drug Des Devel Ther. 2015;9:3529-45. .

  172. Izetti P, Hautefeuille A, Abujamra AL, de Farias CB, Giacomazzi J, Alemar B. PRIMA-1, a mutant p53 reactivator, induces apoptosis and enhances chemotherapeutic cyto-toxicity in pancreatic cancer cell lines. Invest New Drugs. 2014;32(5):783-94. .

  173. Huang F, Tang J, Zhuang X, Zhuang Y, Cheng W, Chen W. MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha. PLoS One. 2014;9(2):e87897. .

  174. Liao R, Li S, Wang H, Chen C, Chen X, Cai C. Simultaneous detection of two hepatocellar carcinoma-related microRNAs using a clever single-labeled fluorescent probe. Analytica Chimica Acta. 2017;983:181-88. .

  175. Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS. Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res. 2012;72(1):335-45. .

  176. Ma Y, Deng F, Li P, Chen G, Tao Y, Wang H. The tumor suppressive miR-26a regulation of FBXO11 inhibits proliferation, migration and invasion of hepatocellular carcinoma cells. Biomed Pharmacother. 2018;101:648-55. .

  177. Bao B, Wang Z, Ali S, Ahmad A, Azmi AS, Sarkar SH. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prevent Res (Philadelphia, PA). 2012;5(3):355-64. .

  178. Song Y, Jin D, Jiang X, Lv C, Zhu H. Overexpression of microRNA-26a protects against deficient beta-cell function via targeting phosphatase with tensin homology in mouse models of type 2 diabetes. Biochem Biophys Res Commun. 2018;495(1):1312-16. .

REFERENZIERT VON
  1. Innao Vanessa, Allegra Andrea Gaetano, Musolino Caterina, Allegra Alessandro, New Frontiers about the Role of Human Microbiota in Immunotherapy: The Immune Checkpoint Inhibitors and CAR T-Cell Therapy Era, International Journal of Molecular Sciences, 21, 23, 2020. Crossref

  2. Qianmei Yin, Zehong Su, Guang Wang, Hui Li, Lian Gaojian, Recent advances in the role of Th17/Treg cells in tumor immunity and tumor therapy, Immunologic Research, 69, 5, 2021. Crossref

  3. Yu Yi, Wang Yunxing, Zou Yufeng, Yu Yuan, Huang Xuan, CYP26A1 Is a Novel Cancer Biomarker of Pancreatic Carcinoma: Evidence from Integration Analysis and In Vitro Experiments, Disease Markers, 2022, 2022. Crossref

Zukünftige Artikel

Identification of a novel five-gene prognostic model for laryngeal cancer associated with mitophagy using integrated bioinformatics analysis and experimental verification Dong Song, Lun Dong, Mei Wang, Xiaoping Gao Function of steroid receptor coactivators (SRCs) in T cells and cancers: Implications for cancer immunotherapy Wencan Zhang, Xu Cao, Hongmin Wu, Xiancai Zhong, Yun Shi, Zuoming Sun Electroacupuncture Alleviates Ischemic Stroke by Activating the mTOR/SREBP1 Pathway Jiawang Lang, Jianchang Luo, Luodan Wang, Wenbin Xu, Jie Jia, Zhipeng Zhao, Boxu Lang KIAA1429 induces the m6A modification of LINC01106 to enhance the malignancy of lung adenocarcinoma cell via JAK/STAT3 pathway Di Xu, Ziming Wang, Fajiu Li Effect of p-estrogen receptor at serine on its function and breast growth Yuan Liang, Junhui Qin, Tiancheng Ma, Tong Yang, Zhenyu Ke, Ruian Wang Mechanistic Insights into Tanshinone IIA in the Amelioration of Post-Thyroidectomy Hypoparathyroidism Xiaoyu Qian, Lin Li, Liang Chen, Chao Shen, Jian Tang MiRNA let-7d-5p alleviates inflammatory responses by targeting Map3k1 and inactivating ERK/p38 MAPK signaling in microglia Fan Fang, Cheng Chen Role of Natural Killer Cells as Cell-Based Immunotherapy in Oral Tumor Eradication and Differentiation Both In Vivo and In Vitro Kawaljit Kaur, Anahid Jewett The Current and Future States of Natural Killer Cell-Based Immunotherapy in Hepatocellular Carcinoma Tu Nguyen, Po-Chun Chen, Janet Pham, Kawaljit Kaur, Steven Raman, Anahid Jewett, Jason Chiang Phillygenin alleviated arthritis through the inhibition of NLRP3 inflammasome and Ferroptosis by AMPK Jianghui Wang, Shufang Ni, Kai Zheng, Yan Zhao, peihong zhang, Hong Chang The value of systemic immune-inflammation index and T cell subsets in the severity and prognosis of sepsis Hao Zhou Efficacy and Nuances of Precision Molecular Engineering for Hodgkin's Disease to a Gene Therapeutic Approach Muhammad Imran Qadir, Bilal Ahmed, Nadir Hussain Serum interleukin 6 and ferritin levels are the independent risk factors for pneumonia in elderly patients Hao Yuan, Jing Tian, Lu Wen Exploration of diagnostic markers associated with inflammation in chronic kidney disease (CKD) based on WGCNA and machine learning Qianjia Wu, Yang Yang, Chongze Lin Clinical significance of serum CTRP3 level in the prediction of cardiac dysfunction and intestinal mucosal barrier dysfunction in patients with severe acute pancreatitis Qiang Shao, Lin Sun The protective effect and mechanism of mild hypothermia on pig lung injury after cardiopulmonary resuscitation Jinlin Ren, Fangfang Zhu, Dongdong Sang, Mulin Cong, Shujuan Jiang Exploring mechanism of Zilongjin in treating lung adenocarcinoma based on network pharmacology combined with experimental verification Kang Zhang, Xiaoqun Chen Gastric Cancer Immune Subtypes and Prognostic Modeling: Insights from Aging-Related Genes Analysis Jian Shen, Minzhe Li Effects of different doses of dexmedetomidine on the prevention of postoperative sleep disturbance and serum neurotransmitter level in patients under general anesthesia Huifei Lu, Fei He, Ying Huang, Zhongliang Wei Identification of key ubiquitination-related genes and their associated with immune infiltration in osteoarthritis based on mRNA-miRNA network Dalu Yuan, Hailiang Shen, Lina Bai, Menglin Li, Qiujie Ye Diagnostic and Prognostic value of peripheral neutrophil CD64 index in elderly patients with community-acquired pneumonia Yan Li, Jing Zhang, Suhang Wang, Jie Cao Identification of Metabolism-Related Prognostic Biomarkers and Immune Features of Head and Neck Squamous Cell Carcinoma Rongjin Zhou, Junguo Wang Downregulation of miR-503-5p promotes the development of pancreatic cancer via targeting cyclin E2 Fei Li, Ying-pei Ling, Pan Wang, Shi-cheng Gu, Hao Jiang, Jie Zhu
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain