Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Automation and Information Sciences
SJR: 0.275 SNIP: 0.59 CiteScore™: 0.8

ISSN Druckformat: 1064-2315
ISSN Online: 2163-9337

Volumen 52, 2020 Volumen 51, 2019 Volumen 50, 2018 Volumen 49, 2017 Volumen 48, 2016 Volumen 47, 2015 Volumen 46, 2014 Volumen 45, 2013 Volumen 44, 2012 Volumen 43, 2011 Volumen 42, 2010 Volumen 41, 2009 Volumen 40, 2008 Volumen 39, 2007 Volumen 38, 2006 Volumen 37, 2005 Volumen 36, 2004 Volumen 35, 2003 Volumen 34, 2002 Volumen 33, 2001 Volumen 32, 2000 Volumen 31, 1999 Volumen 30, 1998 Volumen 29, 1997 Volumen 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v44.i9.30
pages 24-42

Identification of Multivariable Systems Using Steady-state Mode Parameters

Vyacheslav F. Gubarev
Institute of Space Research National Academy of Sciences of Ukraine State Space Agency of Ukraine Kiev, Ukraine
Sergey V. Melnichuk
Institute of Space Research of National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Kiev


The paper has developed the updated method for identification of multivariable linear systems described by the state space model using the approximate steady-state mode parameters which are defined by the integration of experimentally obtained output signals under the harmonic excitation on the input. The method allows one to update the model of dimension maximum permissible by stability condition to make it possible to approximate the real system output with accuracy consistent with errors in the obtained data.


  1. Alexandrov A.G., Method of frequency parameters.

  2. Alexandrov A.G. , Finite-frequency identification: multivariable object.

  3. Orlov Yu.F. , Identification by frequency parameters.

  4. Orlov Yu.F. , Structural identification of multivariable object.

  5. Orlov Yu.F. , Identification by the frequency parameters under parallel tests.

  6. Gubarev V.F. , Rational approximation of systems with distributed parameters.

  7. Gubarev V.F. , Method of iterative identification of multidimensional systems by uncertain data. Part I. Theoretical aspects.

  8. Golub G.H.; van Loan Ch.F. , Matrix computations [Russian translation].

Articles with similar content:

Analysis of the Stability in Large of a Sampled-Data System with Nonlinear Continuous Part by Considering an Approximate Nonlinear Model
Journal of Automation and Information Sciences, Vol.32, 2000, issue 2
Anatoliy I. Korshunov, Andrey A. Korshunov
Evaluation of the Effectiveness of the Filter Quasi-Optimum Receiver of a Multifrequency Nonlinear Radio Detector
Telecommunications and Radio Engineering, Vol.67, 2008, issue 4
N. T. Khakimov
Walsh Functions in Linear-Quadratic Optimization Problems of Linear Nonstationary Systems
Journal of Automation and Information Sciences, Vol.51, 2019, issue 8
Yuriy A. Timoshin , Alexander A. Stenin, Irina G. Drozdovich
Method for Searching the Gradient of the Functional by the Matrix of a Feedback Circuit on Solving the Problem of the Synthesis of the Optimal Stabilization System by Output
Journal of Automation and Information Sciences, Vol.34, 2002, issue 3
Nargiz Akhmed Kizi. Safarova, Fikret Akhmed Ali Ogly Aliev
Geometrical Model of Control System Presented on Complex Error Surface
Journal of Automation and Information Sciences, Vol.43, 2011, issue 5
Oleg N. Agamalov