Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Druckformat: 2150-766X
ISSN Online: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v5.i1-6.150
pages 116-131

THE ADVANCED TECHNOLOGY OF PREVENTION OF THE ANOMALOUS COMBUSTION REGIMES DEVELOPMENT IN THE SUBMARINE'S BALLISTIC ROCKET WITH LARGE-SIZED SPRM

Alexander Lukin
Western-Caucasus Research Center

ABSTRAKT

An important direction of the modern submarine ballistic rockets (SBR) top stages solid propellant rocket motor (SPRM) improvement is investigation of methods of optimal organization of the intrachamber processes development at the SPRM ignition-transient period of operation with the purpose of reduction of impact and vibrational loads on the rocket and its systems. The main peculiarity of the structural diagrams of SBR top stages propulsion systems is that the case-bonded charge with internal channel has a partially non-fastening and unarmored end-face surface in the vicinity of the head end. The thickness of the non-flowing clearance (stagnation zone) between the SPRM casing head end internal surface and the charge end-face surface can increase in 20−100 times at the operating pressures in the combustion chamber (5−10) MPa. In a number of cases, operation of the above mentioned engine can occur in abnormal mode. An anomalous mode of ignition and combustion in the beginning of the SPRM combustion chamber can serve the non-estimated action from the pyrotechnic ignition system (IS). Such a non-calculated effect results in non-uniformity of the course of working processes during the propellant charge ignition. In the course of filling the intrachamber volume with combustion products (CP) coming from the IS and from the already ignited part of the charge, the boot from the engine casing and from the charge may break off. The numerical study of the physicochemical processes subsequent to the boot break off is conducted. Executed calculations demonstrate that the ignition in an abnormal mode appearance in the SPRM described above can be prevented. The appropriate technology for the prevention of the solid propellant charge anomalous ignition regimes was developed. This technology provides uniformity of the SPRM operation during the ignition-transient period by means of the CP selection, coming from the IS, both in space orientation and in time. For practical realization of new ignition technology, two special SPRM IS design schemes were developed.


Articles with similar content:

MULTINOZZLE COMBUSTION CHAMBER OF AVIATION GAS TURBINE ENGINES AS A BASIS OF ENVIRONMENTAL SAFETY. REVIEW
International Journal of Energy for a Clean Environment, Vol.17, 2016, issue 2-4
S. V. Lukachev, Vladimir Biryuk, Alexey A. Gorshkalev, Yu. I. Tsybizov
COMBUSTION BEHAVIORS AND MECHANISM OF AP-BASED COMPOSITIONS WITH NITROESTER BINDERS
International Journal of Energetic Materials and Chemical Propulsion, Vol.14, 2015, issue 5
Valery V. Serushkin, Valery P. Sinditskii, Sergey A. Filatov, Anton N. Chernyi
COMPOSITE PROPELLANT EXTINCTION BY LASER ENERGY PULSE
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
Claudio Zanotti, Piero Giuliani
ADVANCED LIQUID AND GELLED PROPELLANTS FOR ROCKET AND RAMJET PROPULSION
International Journal of Energetic Materials and Chemical Propulsion, Vol.14, 2015, issue 2
Andreas Gernoth, Michele Negri, Helmut K. Ciezki
Aggregated Optimization Model of Ecological and Economic Interaction
Journal of Automation and Information Sciences, Vol.33, 2001, issue 5-8
Marina V. Korobova