Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Druckformat: 2150-766X
ISSN Online: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2013005392
pages 275-306

MODELING OF A SHORT ACTION MOTOR DISCHARGING A WEIGHT

Dan Michaels
Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
Alon Gany
Sylvia and David IA Fine Rocket Propulsion Center and the Aerothermodynamics Lab, Faculty of Aerospace Engineering, Technion – Israel Institute of Technology, Haifa, 3200003, Israel

ABSTRAKT

This paper investigates the interior ballistics of a unique concept for short action motors, based on a rocket-type combustion chamber discharging a weight through an exhaust tube. Depending on the overall system requirements, different kinds of propellant and weight may be considered. In the current study a system comprising a granular solid propellant and a solid weight is considered in order to capture the basic mechanisms of the impulse augmentation. A simplified lumped parameters model and a detailed two-phase flow model have been formulated and the fundamental characteristics of the propulsion system have been computed and analyzed. The study reveals that for certain system parameters with a given propellant mass the total impulse as well as the specific impulse may be significantly larger than those generated by a conventional rocket motor. The theoretical parametric investigation provides a good understanding on how different system parameters influence the in-terior ballistics processes, and can provide guidelines to the design of thrusters. Such short action motors may be beneficial for spacecraft and missile station keeping and trajectory correction, applying mini-thrusters of this kind, as well as for separating large space bodies such as missiles/launcher stages, satellites, etc.


Articles with similar content:

TOWARDS THE DEVELOPMENT OF "CLEAN BURNING", LOW FLAME TEMPERATURE SOLID GUN PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
J. M. Heimerl, R. A. Fifer, R. A. Pesce-Rodriguez
MATHEMATICAL MODELING OF THROTTLEABLE PROPULSION SYSTEM FOR LUNAR LANDER
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Deepak Kumar Agarwal, Nipin L, Pranav Nath, S Sunil Kumar
INNOVATIVE CONCEPTS FOR HIGH-SPEED UNDERWATER PROPULSION
International Journal of Energetic Materials and Chemical Propulsion, Vol.17, 2018, issue 2
Alon Gany
EFFECTS OF SOME COMBUSTION CHAMBER DESIGN PARAMETERS ON GEOMETRIC FEATURES OF THE FLAME FRONT
Energy and the Environment, 1998, Vol.0, 1998, issue
A. Bilgin
Computer Codes for Ballistic Performance Calculations of Base Bleed Propellant Grain
International Journal of Energetic Materials and Chemical Propulsion, Vol.1, 1991, issue 1-6
Yves Fabignon, Dominique Coupez