Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Druckformat: 2150-766X
ISSN Online: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2012005014
pages 297-319

PARTICLE COMBUSTION DYNAMICS OF METAL-BASED REACTIVE MATERIALS

Edward L. Dreizin
New Jersey Institute of Technology, Newark, New Jersey 07102, USA; Tomsk State University, Tomsk, 634050, Russia
Carlo Badiola
New Jersey Institute of Technology, Newark, NJ, USA
Shasha Zhang
New Jersey Institute of Technology, Newark, NJ 07029 USA; Key Laboratory of Hydraulic Machinery Transients, MOE, Wuhan University, Wuhan, 430072, China; School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
Yasmine Aly
New Jersey Institute of Technology, Newark, New Jersey, USA

ABSTRAKT

Micron-sized particles of aluminum and aluminum-based reactive materials were fed into a CO2 laser beam where they were ignited. Just prior to entering the CO2 beam, particles were illuminated by a low-power infrared laser, and their sizes were measured in situ using the intensity of scattered light. Experiments are presented for spherical Al and nanocomposite powders prepared by mechanical milling, including Al·CuO, Al·MoO3, Al·I2, Al·B·I2, Al-wax, and Al-polyethylene. The particle emission signals were recorded and their combustion temperatures were measured optically. In addition, the intensity of molecular AlO emission was monitored. Experiments were performed in air for all materials; additional data for Al combustion in different oxidizers are also presented. For all materials, the effect of particle size on its burn time was observed to be small. No composite material demonstrated consistently higher temperatures or shorter burn times compared to Al powders. For materials with volatile additives (I2, wax, polyethylene), particle combustion was accompanied by pronounced oscillatory patterns; especially large vapor-phase flames were observed for Al−hydrocarbon composites. Distinct surface reactions were observed for Al·B·I2 composite particles, which also had the longest burn times compared to other materials. Al·CuO particles fragmented upon ignition while Al·MoO3 particles burned relatively slowly and without fragmentation.


Articles with similar content:

COMBUSTION OF BORON-BASED SLURRIES IN A RAMBURNER
International Journal of Energetic Materials and Chemical Propulsion, Vol.2, 1993, issue 1-6
W. Liehmann
OXIDATION, IGNITION AND COMBUSTION OF AL-HYDROCARBON COMPOSITE REACTIVE POWDERS
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 4
Shasha Zhang, Mirko Schoenitz, Edward L. Dreizin
IGNITION AND COMBUSTION OF NICKEL COATED AND UNCOATED ALUMINUM PARTICLES IN HOT POST-FLAME ENVIRONMENT
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 1
Ryan W. Houim, Eric Boyd, Kenneth K. Kuo
SUPERIOR MATERIAL PROPERTIES OF HYBRID FILLER-REINFORCED ALUMINUM MMC THROUGH DOUBLE-LAYER FEEDING TECHNIQUE ADOPTED IN BOTTOM TAPPING STIR CASTING
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.22, 2018, issue 4
Elango Natarajan, Rathinasabapathy Sasikumar, S. Prakash
EFFECTS OF METHANOL AND FUMED SILICA ON LINEAR BURNING RATES OF AQUEOUS HYDROXYLAMMONIUM NITRATE
International Journal of Energetic Materials and Chemical Propulsion, Vol.14, 2015, issue 1
Kenneth W. McCown III , Eric L. Petersen