Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Druckformat: 2150-766X
ISSN Online: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2013005785
pages 511-536

INVESTIGATION OF SOLID OXIDIZER AND GASEOUS FUEL COMBUSTION PERFORMANCE USING AN ELEVATED PRESSURE COUNTERFLOW EXPERIMENT FOR REVERSE HYBRID ROCKET ENGINE

Reed H. Johansson
Department of Aerospace Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Terrence L. Connell, Jr.
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Grant A. Risha
The Pennsylvania State University-Altoona, Altoona, Pennsylvania 16601, USA
Richard A. Yetter
The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Gregory Young
Research and Development Department, Naval Surface Warfare Center − Indian Head Division, Indian Head, Maryland 20640, USA

ABSTRAKT

Pressurized counter/low burner and static-fired motor studies were conducted to explore the possibility of a reverse hybrid system, having a solid oxidizer and gaseous fuel. Theoretical performance analysis indicates such a system may yield specific impulse and density specific impulse similar to composite solid propellants. Pressurized counter/low flame studies, conducted using pressed ammonium perchlorate (AP) pellets and gaseous ethylene, show three pressure dependent combustion regimes. AP decomposition, for pressures below 1 MPa, is controlled by heat transfer from the resulting diffusion flame, which forms between the fuel and decomposition products of AP. In this low pressure regime, the AP burning rate is found to increase with flame strain rate and pressure, yielding measured values between 0.1 to 0.5 mm/s. As pressure increases, the monopropellant flame moves closer to the oxidizer surface until the pressure reaches the self-decomposition limit, at which point the monopropellant flame becomes nearly independent of the diffusion flame. Further increasing the pressure yields burning rates between 0.4 to 0.7 cm/s, which are consistent with the literature. Variation of flame strain rate under these conditions has little or no influence on the AP burning rate for the range of flow conditions tested. Similar studies conducted with methane suggest burning rates are unaffected by fuel type. Lab-scale static motor firings were conducted to examine ignition, variation of fuel flow rate and initial motor pressure, and system performance. Results indicate that successful motor operation requires initial pressures capable of boosting the system into the higher burning rate regimes.


Articles with similar content:

SURFACE HEAT RELEASE OF HTPB-BASED FUELS IN OXYGEN RICH ENVIRONMENTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
H. Stephen Jones, Grant A. Risha, George C. Harting, Joseph P. Arves, Arie Peretz, Donald E. Koch
GLYCIDYL AZIDE POLYMER AND POLYETHYLENE GLYCOL MIXTURES AS HYBRID ROCKET FUELS
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 2
Koji Fujisato, Yuya Nomura, Motoyasu Kimura, Takeshi Yagishita, Makihito Nishioka, Keiichi Hori, Yutaka Wada
COMBUSTION BEHAVIORS AND MECHANISM OF AP-BASED COMPOSITIONS WITH NITROESTER BINDERS
International Journal of Energetic Materials and Chemical Propulsion, Vol.14, 2015, issue 5
Valery V. Serushkin, Valery P. Sinditskii, Sergey A. Filatov, Anton N. Chernyi
COMBUSTION CHARACTERIZATION OF LASER IGNITION OF METHANE AIR MIXTURE IN A CONSTANT VOLUME COMBUSTION CHAMBER
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Chidanand Koshti, Milankumar Nandgaonkar, Sanket Mulye
COMBUSTION AND PERFORMANCE STUDIES OF GLYCIDYL AZIDE POLYMER AND ITS MIXTURES AS HYBRID ROCKET FUEL
International Journal of Energetic Materials and Chemical Propulsion, Vol.14, 2015, issue 3
Motoyasu Kimura, Hideo Nakayama, Akshay Garg, Po-Jul Chang, Keiichi Hori, Yutaka Wada