Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.142 SNIP: 0.16 CiteScore™: 0.29

ISSN Druckformat: 2150-766X
ISSN Online: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2014010649
pages 471-477

CURE KINETICS OF POLY NITRATOMETHYL OXETANE WITH DIFFERENT ISOCYANATES STUDIED BY DIFFERENTIAL SCANNING CALORIMETRY

Kavita Ghosh
High Energy Materials Research Laboratory, Sutarwadi, Pune, India
Suman Pawar
High Energy Materials Research Laboratory, Sutarwadi, Pune, India
Arvind Kumar
Dept. of Mechanical Engineering, Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh, 208016, India
Arunkanti Sikder
High Energy Materials Research Laboratory, Sutarwadi, Pune, India
Manoj Gupta
High Energy Materials Research Laboratory, Sutarwadi, Pune, India

ABSTRAKT

This paper reports cure kinetics of poly nitratomethyl oxetane (PLN) with different isocyanates like isophorane di-isocyanate (IPDI) and hexamethylene di-isocyanate (HMDI). Reactions were monitored by differential scanning calorimetry (DSC) in the presence of two different cure catalysts namely di butyl tin di laurate (DBTDL) and ferric tris acetyl acetonate (FeAA) and their effect on the cure reaction was studied. Cure kinetics was evaluated using the multiple heating rate Ozawa method. The reactivity of two isocyanates and catalytic efficiencies were determined based on DSC reaction temperature, activation energy, and rate constants. Based on cure temperatures, FeAA catalyzed reactions have lower cure temperature than DBTDL catalyzed reactions, inferring that FeAA is a more active catalyst for PLN cure reactions. Rate constants (k) of FeAA catalyzed PLN cure reactions were higher than of DBTDL catalyzed reactions. The values of activation energies (Ea), pre-exponential factor, and rate constant also support the same trend. Completion of the curing process was monitored with the help of Fourier transform infrared. Viscosity buildup was measured with the help of rheometer by taking curing profiles for each system at 30° C and it followed the similar trend as determined by DSC.

SCHLÜSSELWÖRTER: cure kinetics, catalyst, isocyanates, PLN

Articles with similar content:

COST REDUCTION AND PERFORMANCE IMPROVEMENT OF LOW MELTING POINT MOLTEN SALTS FOR HIGH TEMPERATURE HEAT TRANSFER AND STORAGE
Second Thermal and Fluids Engineering Conference, Vol.22, 2017, issue
Xia Chen, Yuting Wu, Yuanwei Lu, Chong Fang Ma
PREPARATION AND CHARACTERIZATION OF ULTRAFINE ε-HEXANITROHEXAAZAISOWURTZITANE PARTICLES
International Journal of Energetic Materials and Chemical Propulsion, Vol.14, 2015, issue 4
Wenjian Guo, Hequn Li, Binshuo Yu, Jing-Yu Wang, Chongwei An
Chemical and electrochemical study of chromium in molten equimolar CaCl2-NaCl Mixture at 550°C
Advances in Molten Salts, Vol.0, 1998, issue
I. Martin, G. M. Haarberg, A.M. Martinez, E. Barrado, Y. Castrillejo
ANALYSIS OF THERMOPLASTIC PROPELLANTS AND THEIR INGREDIENTS WITH DSC AND TGA
International Journal of Energetic Materials and Chemical Propulsion, Vol.8, 2009, issue 2
Ivan Krakovsky, Marko V. Milos, Vladica Bozic
FERRITE: POTENTIAL NANO-MODIFIER FOR ROCKET PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.16, 2017, issue 4
Pragnesh N. Dave, Shalini Chaturvedi, Pravin N. Ram