Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Druckformat: 2150-766X
ISSN Online: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2015015577
pages 131-140

PREPARATION AND CHARACTERIZATION OF HMX/GAP-ETPE NANOCOMPOSITES

Hequn Li
School of Chemical and Environmental Engineering, North University of China, Taiyuan, Shanxi 030051, P.R. China
Chongwei An
School of Chemical and Environmental Engineering, North University of China, Taiyuan, Shanxi 030051, P.R. China
Mengyuan Du
Shanxi Lu'an Mining (Group) Co., Ltd., Changzhi, Shanxi 046000, P.R. China
Baoyun Ye
School of Chemical and Environmental Engineering, North University of China, Taiyuan, Shanxi 030051, P.R. China
Jing-Yu Wang
School of Chemical and Environmental Engineering, North University of China, Taiyuan, Shanxi 030051, P.R. China

ABSTRAKT

An energetic thermoplastic elastomer (ETPE) was synthesized by glycidyl azide polymer (GAP), Diphenyl-methane-diisocyanate (MDI), and 1,4-butanediol (BDO). With GAP-ETPE as the binder, cyclotetramethylene tetranitramine (HMX)-based nanocomposites were prepared from their cosolution by spray drying. The particle size and morphology of explosive samples were characterized by scanning electron and transmission electron microscopy. The crystal ingredients of the explosive samples were identified by X-ray diffraction. The impact sensitivity and thermal decomposition properties of these samples were also tested and analyzed. The results show that the HMX/GAP-ETPE microparticles are spherical in shape and range from 0.5 to 3 µm in size. Within them microparticles, β-HMX particles uniformly and discretely disperse in GAP-ETPE binders with the particle size ranging from 50 to 200 nm. The nanocomposite particles exhibit considerably low impact sensitivity, meaning that its drop height is 64.9 cm, which increases by 45.3 cm when compared with raw HMX. Moreover, the nanocomposites are easy to decompose under the thermal stimulus because the exothermic decomposition peak temperature decreases to about 6°C at the same heating rate and apparent activation energy decreases to 11.36 kJ/mol, when compared with the raw HMX. When the decomposition starts, HMX/GAP-ETPE nanocomposites have a higher reaction rate constant than raw HMX at the same temperature.


Articles with similar content:

RDX/GAP-ETPE NANOCOMPOSITES FOR REMARKABLY REDUCED IMPACT SENSITIVITY
International Journal of Energetic Materials and Chemical Propulsion, Vol.15, 2016, issue 3
Baoyun Ye, Hequn Li, Jing-Yu Wang, Chongwei An, Wei Ji
SENSITIVITY PROPERTIES AND BURNING RATE CHARACTERISTICS OF HIGH ENERGY DENSITY MATERIALS AND THE PROPELLANTS CONTAINING THESE MATERIALS
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
Koh Kobayashi, Kazushige Kato, Shin Matsuura, Shigefumi Miyazaki
BURN RATE STUDEES OF GAS GENERATOR PROPELLANTS CONTAINING AP/RDX
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
A. N. Nazare, Haridwar Singh, S. N. Asthana, P. G. Shrotri
THERMAL REACTIVITY OF AL/FE CORE−SHELL NANOCOMPOSITES
International Journal of Energetic Materials and Chemical Propulsion, Vol.10, 2011, issue 2
Wei Jiang, Fengsheng Li, Zhipeng Cheng, Xiaojuan Zhang, Yi Wang, Shixi Wu, Xiaode Guo
COMBUSTION MODES OF NANOSCALE ENERGETIC COMPOSITES
International Journal of Energetic Materials and Chemical Propulsion, Vol.8, 2009, issue 4
Kevin M. Zaseck, Daniel J. Vandewalle, Steven F. Son, Gregory M. Dutro, Robert V. Reeves