INTRODUCTION

In learning thermal radiation, we need to master a few differential equations ex-
pressing the appropriate conservation laws together with the appropriate bound-
ary conditions. In this way, learning thermal radiation is similar to learning heat
conduction and convection. But there are several important variations that
make radiation decidedly different. Understanding the general nature of these
differences should help in the total learning process, and so we will highlight
them in what follows.

The fundamental differential equation describing the conservation of the ra-
diant energy in a specified direction, say d, is the Radiative Transfer Equation,
which for a gray nonscattering medium can be written as

ﬁ-i:—a(i—oT‘l/w) (1)

where i is the intensity vector for radiation in direction a, which is a measure of
the strength of that radiation, 7 is the magnitude of i, T" is the local temperature,
and a is a property for the medium and o is a constant?. If we were to compare
this with another conservation equation, say that for the conservation of heat
in a stationary medium at steady-state

V-q=¢" (2)

or the conservation of mass for a flowing fluid:

. dp
(V) = - )
we immediately see some similarities, particularly in the structure of the left-
hand side. The important difference is not so much the details of the equations,
but the fact that Eq. (1) must be written an infinite number of times, once for
each possible direction d in space, whereas Eqs. (3) and (2) need be written
only once.?> Moreover, because very few media are gray, in practice, an equation

2We use a slightly different nomenclature for intensity in this Introduction from that used
in the main body.

3Why do not conduction and convection also require conservation equations in every di-
rection? After all, the medium for Egs. 3 and 2 may be a gas, and gas molecules travel in all
directions in space. The answer is that because a gaseous molecule travels very short paths
before colliding with a neighbor, the overall effect of many, many molecules can be captured
by a single vector equation like q = —kVT.
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like Eq. (1) will have to be written an infinite number of times, once for each
wavelength, there being a different intensity and value of a at every wavelength.
So in a sense there is a double infinity of governing equations, and this is the
main thing that makes radiation different. The saving feature of radiation, at
least for a nonscattering medium, is that for any one combination of wavelength
and direction, the differential equation is relatively easy to solve: it readily
transforms into a first-order, linear, ordinary differential equation, the general
solution to which can be written down at once.

Another difference is in the boundary condition for Eq. (1), which, as in
conduction, is prescribed at an interface between adjacent media. The boundary
condition for the intensity in one direction d depends on the intensity in all the
other (incident) directions. This means that it also depends on the intensity
at all other points on the interface, whereas that for Eqs. (3) or (2) (say zero
velocity or a specified heat flux) is independent of what is going on elsewhere
on the interface. The net result is that the complete statement of the radiative
boundary conditions, written over the entire interface, reduces to an integral
equation. Solving this integral equation is one of the more daunting tasks in
radiant analysis. (One approximate scheme for solving these integral equations
leads to the well-known “form factors.”)

Once the differential equations of a conduction or convection problem have
been solved, the entire solution is more or less complete—although sometimes
one wants to integrate the solution over a bounding area to get the heat flow
over a surface. But once a radiation problem has been solved for the intensity
field, there is always the need for further integration because the intensity itself
is not normally of engineering interest. Normally one wants to know the heat
flow over a surface, and this requires integration over directions and wavelength,
as well as over area. For this reason, multivariable integration plays a major
role in radiant analysis.

All of the above assumes that the temperature field is given [notice the
appearance of temperature in Eq. (1)], but often one does not know the tem-
perature field beforehand. Rather radiation itself plays an important role in
fixing the temperature in the medium. Clearly one needs an additional equa-
tion, and this is the familiar Energy Equation for the medium, which must now
be generalized to include a new term, one representing the local rate, per unit
volume, at which energy is taken out of the radiant field, a quantity that can be
positive or negative. The Energy Equation and the Radiative Transfer Equa-
tion must be solved simultaneously to establish the temperature field and the
intensity field.

Perhaps some comparisons with steady-state conduction will make the above
clear. Finding the intensity corresponding to a given temperature distribution
is like using Fourier’s law: q = —kVT to find the conductive heat flux cor-
responding to a given a temperature distribution. We note, however, that in
conduction, it is the conduction process itself that will fix the temperature dis-
tribution, so Fourier’s Law is of little use unless it is combined with the Energy
Equation, namely Eq. (2). These two equations must be solved simultaneously.
It happens, however, that for pure conduction, one equation can be substituted
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directly into the other to reduce the pair to a single equation: thus q = —kVT
substituted into V-q = ¢’ gives V2T = —¢"" /k, the familiar partial differential
equation that is solved routinely in conduction analysis. Such simple substi-
tution and reduction are not normally possible for radiation; nevertheless, the
underlying structure is the same.

Because of the complexity of the general case, it is in fact very rare to
solve a radiant problem exactly, and there is a heavy reliance on models that
simplify the problem and admit tractable solutions. One such model—one with
which the student should be familiar, as it is treated in undergraduate texts—is
the enclosure containing a transparent medium bounded by a diffuse opaque
surface. In fact, there are three models at work here: the “diffuse surface,” for
which incident radiation is reflected uniformly in all directions; the “transparent
medium,” for which @ = 0 in Eq. (1); and finally the “opaque surface,” for which
the radiant term in the Energy Equation is zero except in a very small volume so
close to the surface that for all practical purposes, the radiant exchange happens
at the surface itself.

This text may breaks into three principal parts. The first, Chapter 1 to
8, is about the Radiative Transfer Equation: its derivation, some solutions for
presumed internal and boundary conditions, and some examples of integrating
these solutions over direction and wavelength. This part also includes chapters
characterizing scattering and radiation’s role in the Energy Equation for the
medium.

The second part, Chapter 9 to 14, is mainly about how we determine the
boundary conditions to the Radiative Transfer Equation, so it deals with the
radiant properties of interfaces and surfaces, and with surface models. When an
interface is perfectly smooth and the material on each side is homogeneous, the
properties of surfaces can be treated exactly by electromagnetic wave theory,
and the second part presents a precis of that theory.

The third part, the remainder of the book, is about solving the Radia-
tive Transfer Equation for a prescribed set of boundary conditions. The first
chapters of this part treat transparent enclosures, a situation that leads to an
integral equation, which is solved to various levels of approximation. Next the
assumption that the gas is transparent (but not the assumption that the gas is
nonscattering) is relaxed, and the associated chapters give a model for the radi-
ant properties of the gas, as well as an exposition of the solution methodology
for isothermal gases. The final chapter treats some simply defined situations
where the Radiative Transfer Equation may be solved in concert with the En-
ergy Equation for a stationary medium. Some of these solutions allow for a
scattering medium.

As has been mentioned in the Preface, many problems are solved using the
software package Mathcad, and where that is done, a hardcopy of the Math-
cad worksheet is included as a figure. Also, the CD in the back of the book
includes an Evaluation Version of Mathcad =~ 11, Single User Edition, which is
reproduced with permission?. This software is a fully functional trial of Math-

4Mathcad and Mathsoft are registered trademarks of Mathsoft Engineering and Education,
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cad which will expire 120 days from installation. For technical support, more
information about purchasing Mathcad, or upgrading from previous editions,
see http://www.mathcad.com. The CD also contains the computer files of the
Mathcad worksheets that were included in hardcopy in the figures.

The book uses a slightly unorthodox referencing system that needs to be
explained. The section “References, Bibliography, and Further Reading” at the
back of the book lists many important literature sources. Some of these (but
not all) are cited in the main section of the book, with the author, title, and
year being mentioned at the point of citation if the citation is to a book and
the author, journal, and year if it is to a paper. A more complete reference for
these brief citations can be quickly found by searching through the References,
Bibliography, and Further Reading Section.

Students are encouraged to review the radiation chapters in their under-
graduate heat transfer textbook before starting on this graduate text. While
the present text does not require any previous exposure to thermal radiation,
the different perspective of the undergraduate text will help to set the frame-
work for the present treatment, which takes a more fundamental approach. It
is hoped that it will answer any fundamental questions encountered on reading
the undergraduate text, although it will probably raise a few more, as there is
much to learn about radiation.

Inc., http://www.mathcad.com. Mathsoft Engineering and Education, Inc. owns both the
Mathcad software program and its documentation. Both the program and documentation are
copyrighted with all rights reserved by Mathsoft. No part of the program or its documentation
may be produced, transmitted, transcribed, stored in a retrieval system,or translated into any
language in any form without the written permission of Mathsoft.
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