LIST OF SYMBOLS

```
particle radius (m)
\boldsymbol{a}
                   weight function (-)
a
                   weight function for sum-of-gray-gases model (-)
a_i
                   area (m<sup>2</sup>)
A
                   total band absorptance (–)
A
A^*
                   dimensionless band absorptance (= A/\omega) (-)
\overline{A}
                   spectrum integrated absorptance (–)
A_{ii}, B_{ii}
                   Einstein probability coefficients (–)
                   line half-width (-)
R
                   rotational constant (–)
Bo
                   Boltzmann number (convection-to-radiation parameter) (–)
С
                   speed of light (m/s)
                   speed of light in vacuum (m/s)
c_o
C_1, C_2
                   Planck's first and second constants (see Table 2.1)
C_3
                   constant in Wien's displacement law (see Table 2.1)
C_f
                   molar fuel concentration (N/m<sup>3</sup>)
                   line spacing (-)
d
                   particle diameter (m)
                   diameter (m)
D
D
                   binary diffusion coefficient (m<sup>2</sup>/s)
E
                   emitted flux (W/m<sup>2</sup>)
E
                   electric field vector (N/C)
8
                   net (emission – absorption) volumetric radiant energy loss/gain (W/m<sup>3</sup>)
                   blackbody emitted flux (W/m<sup>2</sup>)
E_{h}
E_n(x)
                   exponential integral function (–)
f_v
                   volume fraction (–)
                   photon distribution function (-)
f_v
                   radiation flux vector (W/m<sup>2</sup>)
F
                   fractional blackbody function (-)
F_{0-\lambda T}
                   configuration (view, angle) factor between finite area i and area j (–)
F_{i-j}
                   irradiation (incident radiation flux) on a surface (W/m<sup>2</sup>)
G
G
                   irradiance (radiation incident on a volume of matter, from all possible
                   directions) (W/m<sup>2</sup>)
h
                   enthalpy (J/kg)
                   convective heat transfer coefficient (W/m<sup>2</sup>K)
h
                   Planck's constant (= 6.626 \times 10^{-34}Js)
h
```

```
Н
                  magnetic field vector (-)
\Delta H_{fo}
                  latent heat of vaporization (J/kg)
                  unit vector in the x-direction (–)
i
                  intensity of radiation (radiance) (W/m<sup>2</sup> · sr)
I
                  blackbody intensity of radiation (= \sigma T^4/\pi) (W/m<sup>2</sup> · sr)
I_h
                  unit vector in the v-direction (-)
j
J
                  rotational quantum number (–)
                  radiosity (radiation flux leaving a surface) (W/m<sup>2</sup>)
J
k
                  thermal conductivity (W/m K)
                  Boltzmann constant (= 1.3807 \times 10^{-23} \text{ J/K})
k
                  imaginary part of complex index of refraction (-)
k
                  unit vector in the z-direction (–)
k
                  direction cosines with x-, y-, z-axis (-)
l.m.n
L
                  length (m)
                  mean beam length (m)
L_m
                  geometric mean beam length (m)
L_o
                  mass flux (kg/m<sup>2</sup>s)
m
                  complex index of refraction (–)
m
                  real part of complex index of refraction (-)
n
                  self-broadening exponent in Eq. (4.58) (-)
n
                  unit vector normal to real or imaginary surface (-)
n
N
                  number of particles per unit volume (#/m<sup>3</sup>)
                  Nusselt umber (–)
Nu
                  pressure (N/m<sup>2</sup>)
p
P
                  radiation pressure (N/m<sup>2</sup>)
                  Legendre polynominals (–)
P_{I}
Pr
                  Prandtl number (-)
                  heat flux (W/m<sup>2</sup>)
q
                  heat flux vector (W/m<sup>2</sup>)
q
Q
                  heat transfer rate (W)
Q
                  Mie efficiency factor (–)
                  radial coordinate (m)
r
r
                  position vector (m)
R
                  radius (m)
R
                  universal gas constant (= 8.3145J/mol K)
                  Reynolds number (-)
Re
                  distance measured along the direction of ray propagation (m)
S
                  unit vector in the direction of ray propagation (–)
S
                  line-integrated absorption coefficient (line strength) (–)
S
S
                  source function (W/m<sup>3</sup>)
S
                  distance between two points in the medium (m)
S
                  flame speed (m/s)
S
                  Poynting vector (W/m<sup>2</sup>)
                  Stanton number (–)
\overline{S_iS_i}, \overline{S_iG_k}
                  total exchange area in zone method (m<sup>2</sup>)
                  time (s)
T
                  temperature (K)
```

```
internal energy (J/kg)
и
                  velocity in the x-direction (m/s)
и
                  scaling function for absorption coefficient (–)
и
                  overall heat transfer coefficient (W/m<sup>2</sup>K)
U
                  radiant energy density (J/m<sup>3</sup>)
U
                  vibrational quantum number (–)
ν
                  velocity in the y-direction (m/s)
ν
                  velocity vector (m/s)
V
                  volume (m<sup>3</sup>)
                  quadrature weight (-)
w_i
                  equivalent line width (-)
W
                  molecular weight (–)
W
                  Cartesian coordinates (m)
x,y,z
X
                  optical length (-)
X_i
                  mole fraction of species i (-)
Y_l^m
                  spherical harmonics (–)
Y_i^{\iota}
                  mass fraction of species I(-)
Greek Symbols
                  abcorntivity or abcorntance (_)
```

α	absorptivity or absorptance (–)
α	band-integrated absorption coefficient (band strength parameter) (–)
α	thermal diffusivity (= $k/\rho c_p$) (m ² /s)
β	extinction coefficient (= $\kappa + \sigma$) (m ⁻¹)
β	line overlap (structure) parameter (–)
Γ	generalized diffusion coefficient (m ² /s)
δ	Dirac-delta function (–)
δ_{ij}	Kronecker delta function (–)
${\cal E}$	emissivity or emittance (–)
${\cal E}$	electrical permittivity of matter (C ² /Nm ²)
${\cal E}$	complex dielectric function (= $\varepsilon' - \varepsilon''$) (–)
θ	polar angle (rad)
Θ	scattering angle (rad)
K	absorption coefficient (m ⁻¹)
λ	wavelength (µm)
μ	dynamic viscosity (kg/ms)
μ	magnetic permeability (Ns^2/C^2)
μ	direction cosine (= $\cos\theta$) (–)
ν	frequency (Hz)
ν	kinematic viscosity (m ² /s)
ξ	direction cosine (–)
ξ	dimensionless coordinate (–)
ρ	reflectivity or reflectance (–)
ρ	density (kg/m ³)
σ	Stefan-Boltzmann constant (= $5.670 \times 10^{-8} \text{W/m}^2 \text{ K}^4$)
σ	scattering coefficient (m ⁻¹)
au	transmissivity (–)

```
optical distance or optical coordinate (–)
τ
                   transmittance (-)
Υ
                   azimuthal angle (rad)
φ
\phi
                   porosity (-)
                   general scalar variable (\rho, u, v, w, t_0, T, h, Y_i ...)
\phi
                   scattering phase function (–)
Φ
                   single scattering albedo (= \sigma/\beta) (–)
\omega
                   wave number (1/cm)
ω
                   angular frequency (rad/s)
\omega
                   mass rate production of species l (kg/m<sup>3</sup>s)
\dot{\omega}_i
                   solid angle (sr)
Ω
                   particle size parameter (–)
χ
                   radiant fraction (-)
\chi_R
```

Subscripts

-	
1,2	at location "1" or "2"
a	absorption
amb	ambient
av	average
b	blackbody
c	chemical
c	collimated or beam flux
C	collision or convection
d	diffuse flux or droplet
D	Doppler or based on diameter
e	effective
e	extinction
eff	effective
eff f g i	fuel or flame
g	gas
i	incident or dummy counter
j	rotational sate or dummy counter
k	absorption coefficient variable or dummy counter
ℓ	leaving
L	at length
mix	mixture
n	normal direction
0	reference value or in vacuum
p	particle
P	Planck-mean
r	reflected
R	reflected component or radiation
R	Rosseland-mean or at $r = R$
S	along the path s or at surface
S	solid or surroundings
S	scattering

t transmitted component

u upper limit

v at a vibrational state or at constant volume

w wall value

x,y,z components in the x,y,z directions

 θ, ϕ in a given direction

 λ at a given wavelength or per unit of wavelength ν at a given frequency or per unit frequency

 ω at a given wave number or per unit wave number

polarization component or situated in plane of incidence

□ polarization component or situated in plane perpendicular to the plane of

incidence

Superscripts

o external

', " real and imaginary parts of a complex number

+, – into "positive" and "negative" directions

d diffusive s specular

average value or spectrum integrated

~ Favre average or effective