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This note reviews, compares and contrasts three notions of “distance” or “size” that arise often in concentration-of-

measure inequalities. We review Talagrand’s convex distance and McDiarmid’s diameter, and consider in particular

the normal distance on a topological vector space X , which corresponds to the method of Chernoff bounds, and is in

some sense “natural” with respect to the duality structure on X . We show that, notably, with respect to this distance,

concentration inequalities on the tails of linear, convex, quasiconvex and measurable functions on X are mutually

equivalent. We calculate the normal distances that correspond to families of Gaussian and of bounded random variables

in R
N , and to functions of N empirical means. As an application, we consider the problem of estimating the confidence

that one can have in a quantity of interest that depends upon many empirical—as opposed to exact—means and show

how the normal distance leads to a formula for the optimal assignment of sampling resources.

KEY WORDS: concentration of measure, large deviations, normal distance, optimal sampling, Talagrand
distance, uncertainty quantification

1. INTRODUCTION

It is by now almost classical that smooth enough convex functions enjoy good concentration properties; see, e.g.,
[1–4] for surveys of the literature. It also is known that convexity can be neglected in the Gaussian case and that the
smoothness assumptions are not essential and can be replaced, for instance, with bounded martingale differences; see
e.g., [5, 6] and also [7]. Concentration inequalities have found many applications beyond pure mathematics; e.g., in
fields such as uncertainty quantification [8], machine learning [9] and distributed computing [10].

Concentration of measure is based on a simple but non-trivial observation originally due to Lévy [11]: in a high-
dimensional probability space; “nearly all” the probability mass lies close to any set with measure at least1/2. Put
another way, functions of many independent variables with small sensitivity to each individual input are very nearly
constant. A typical concentration (or deviation) inequality on a spaceX is of the form

P[|f(X) − m| ≥ r] ≤ C1 exp(−C2r
2), (1)

wheref : X → R is a suitably well-behaved function;X is anX -valued random variable, such that the push-forward
measure(f ◦ X)∗P has some concentration property; andm is either the mean valueE[f(X)] or median value
M[f(X)]. Some times the control is one sided and the absolute value inEq. (1) is omitted.
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A common feature of many concentration results is that an appropriate notion of size or distance is needed; e.g.,
the McDiarmid diameter [5] or Talagrand’s convex distance [12]. This paper reviews both the McDiarmid diameter
and Talagrand’s distance and discusses, in particular, thedistance associated with the method of Chernoff bounds [13],
which we term “normal distance.” Chernoff bounding is a technique often used in large deviations theory [14–16], in
which the measure of a set is estimated using a containing half-space. Although simple, this method leads to a notion
of normal distance that is in some sense “natural” with respect to the duality structure onX . Notably, with respect to
this distance, concentration inequalities on the tails of linear, convex, quasi-convex, and non-linear functions onX are
mutually equivalent (see Theorem 1).

In Section 5, we identify the normal distance in several commonly encountered cases. In particular, Proposition 3
identifies the normal distance that corresponds to the concentration of a vector, the entries of which are the empirical
(sampled) means of functions of independent random variables. In the example that follows it, we consider the problem
of estimating the confidence that one can have in a quantity ofinterest that depends upon such a vector ofN ∈ N

empirical, as opposed to exact, means. In particular, we show how the Chernoff method and normal distance lead to a
formula for the optimal assignment of sampling resources totheN to-be-estimated means.

The notation and setting of the paper are covered in Section 2. Section 3 reviews the inequalities and distances
of Talagrand and McDiarmid. Normal distance is introduced and its main properties (including Theorem 1) are ex-
amined in Section 4. In Section 5, the normal distance is determined explicitly in several cases, thereby connecting
Theorem 1 with classical concentration results. In Section6, it is shown that the equivalent inequalities of Theorem 1
are asymptotically sharp (in the sense used in large deviations theory) in the high-dimensional limit, provided that the
sets of interest are convex and “sufficiently round” at thosepoints that are closest to the center of massE[X ].

2. NOTATION AND BACKGROUND

Throughout,X will denote a real topological vector space with continuousdual spaceX ∗; 〈`, x〉 denotes the dual
pairing betweeǹ ∈ X ∗ andx ∈ X ; 〈v, `〉 also will denote the dual pairing betweenv ∈ X ∗∗ and` ∈ X ∗. It is not
strictly necessary to assume thatX is locally convex, but the results of this paper may be trivially true if X ∗ does not
contain enough linear functionals.

2.1 Half-Spaces

Givenp ∈ X andν ∈ X ∗, Hp,ν will denote the closed half-space ofX that hasp in its frontier and outward-pointing
normalν; i.e.,

Hp,ν := {x ∈ X | 〈ν, x〉 ≤ 〈ν, p〉} . (2)

Note well the degenerate caseHp,0 = X . Every(p, ν) ∈ X × X ∗ defines a unique closed half-space ofX , whereas
a given closed half-space can have multiple distinct representations:Hp,ν = Hp′,ν′ if, and only if, ν is a positive
multiple ofν′ and〈ν, p − p′〉 = 〈ν′, p − p′〉 = 0.

2.2 Convex Analysis

The closed convex hull ofA ⊆ X will be denoted byco(A). Given a closed convex setK ⊆ X andp ∈ K, N∗
pK

denotes the outward normal cone toK atp, andN∗K denotes the outward normal bundle ofK:

N∗
pK := {ν ∈ X ∗ |K ⊆ Hp,ν} , (3)

N∗K :=
{
(p, ν) ∈ X × X ∗

∣∣ p ∈ K, ν ∈ N∗
pK
}

. (4)

The outward normal coneN∗
pK is a pointed convex cone: it contains0, is convex, ands1ν1 + s2ν2 ∈ N∗

pK for all
s1, s2 ≥ 0 and allν1, ν2 ∈ N∗

pK. Also,N∗
pK = {0} if p is an interior point ofK. Note thatN∗K ⊆ X × X ∗ is not

necessarily a convex set (see Fig. 1 for an illustration).
ForA ⊆ X , χA denotes the characteristic function ofA, which is convex whenA is a convex set:
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FIG. 1: A convex setK and its outward normal cones atp, q, r ∈ K. ∂K is smooth atp ∈ ∂K, soN∗
pK is a half-line;

∂K has a vertex atq, soN∗
qK has non-empty interior; at the interior pointr, N∗

rK is empty.

χA(x) :=

{
0, if x ∈ A,

+∞, if x /∈ A.
(5)

For f : X → R ∪ {±∞}, f? : X ∗ → R ∪ {±∞} denotes the Legendre–Fenchel transform or convex conjugate
of f , defined by

f?(`) := sup
x∈X

〈`, x〉 − f(x). (6)

If K ⊆ X is a convex set, then a functionf : K → R ∪ {±∞} is said to be quasi-convex if, for everyθ ∈
R ∪ {±∞}, the sublevel set

f−1([−∞, θ]) := {x ∈ K | −∞ ≤ f(x) ≤ θ} (7)

is a convex set; equivalently,f is quasi-convex if, for allx, y ∈ K andt ∈ [0, 1],

f((1 − t)x + ty) ≤ max{f(x), f(y)}. (8)

f is said to be quasi-concave if−f is quasi-convex, andf is said to be quasi-linear if it is both quasi-convex and quasi-
concave. Every convex (respectively, concave, linear) function is quasi-convex (respectively, quasi-concave, quasi-
linear), but not vice versa. In particular, a functionf : RN → R is quasi-linear if, and only if, it is the composition of
a monotone function with a linear functional onRN [17, p. 122].

2.3 Probabilistic Notions

Let (Ω, F , P) be a probability space and letX : Ω → X be anX -valued random variable.E[·] denotes the expectation
operator with respect to the probability measureP: E[X ] is defined to be anym ∈ X such that

E[〈`, X − m〉] ≡
∫

Ω

〈`, X(ω) − m〉dP(ω) = 0 for all ` ∈ X ∗; (9)

if X ∗ separates the points ofX (e.g., ifX is a Banach space), thenE[X ] is unique. ForY : Ω → R, anym ∈ R that
satisfies

sup

{
v ∈ R

∣∣∣∣P[Y ≤ v] ≤ 1

2

}
≤ m ≤ inf

{
v ∈ R

∣∣∣∣P[Y ≤ v] ≥ 1

2

}
(10)

will be called a median ofY and denotedM[Y ]. MX : X ∗ → [0, +∞] denotes the moment-generating function ofX ,
defined by

MX(`) := E [exp〈`, X〉] for all ` ∈ X ∗, (11)

andΛX(`) := log MX(`) denotes the cumulant-generating function (or logarithmicmoment-generating function) of
X . By Hölder’s inequality,ΛX is a convex function.
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3. TALAGRAND’S AND MCDIARMID’S INEQUALITIES

3.1 Talagrand’s Inequalities

It has been known for some time that convex sets and functionsenjoy good concentration properties; moreover, to get
good concentration results, it is necessary to measure distances in the right way.

For example, a theorem of Talagrand shows that if a convex setK ⊆ RN occupies a “significant” portion of
the Hamming cube{−1, +1}N andt � 1, then nearly all of the points of the Hamming cube lie within Euclidean
distancet of K. More precisely, define the Euclidean Hausdorff distance fromx ∈ RN to A ⊆ RN by

dH(x, A) := inf{‖x − a‖2 | a ∈ A}. (12)

Talagrand [18] showed that ifX is uniformly distributed in{−1, +1}N then, for anyA ⊆ RN , E[exp(dH(X, co(A))2

/8)] ≤ P[X ∈ A]−1; hence, Chebyshev’s inequality implies that, for anyt ≥ 0,

P[X ∈ A]P[dH(X, co(A)) ≥ t] ≤ exp

(
− t2

8

)
. (13)

More interesting results can be obtained if one uses not the Euclidean distance but the Hamming distance—or,
more accurately, a supremum over weighted Hamming distances. Forw = (w1, . . . , wN ) ∈ [0, +∞)N , define the
w-weighted Hamming distancedw on a product of setsX =

∏N
n=1 Xn by

dw(x, y) :=

N∑

n=1

wn1[xn 6= yn]; (14)

that is,dw(x, y) is thew-weighted sum of the number of components in whichx, y ∈ X differ. For x ∈ X and
A ⊆ X , setdw(x, A) := infa∈A dw(x, a). Define Talagrand’s convex distance fromx ∈ X to A ⊆ X by

dT(x, A) := sup

{
dw(x, A)

∣∣∣∣∣w ∈ [0, 1]N and
N∑

n=1

w2
n = 1

}
, (15)

and, forA, B ⊆ X , letdT(A, B) := infa∈A dT(a, B). Talagrand [12,§4.1] showed that ifX = (X1, . . . , XN ) is any
X -valued random variable with independent components, then

P[X ∈ A]P[X ∈ B] ≤ exp

(
−dT(A, B)2

4

)
. (16)

These bounds on the probabilities of sets lead to deviation inequalities for convex Lipschitz functions. For example
(cf. [18, 19]), letX be any random variable in the unit cube inRN with independent components, and letf : [0, 1]N →
R be convex and Lipschitz with‖f‖Lip ≤ 1; then, for anyt ≥ 0,

P[f(X) ≥ M[f(X)] + t] ≤ 2 exp

(
− t2

4

)
. (17)

Note, however, that these results use not only the convexityof the function of interest, but also require Lipschitz
continuity. What concentration inequalities can be shown to hold without smoothness assumptions?

3.2 McDiarmid’s Inequality

One smoothness-free concentration inequality is McDiarmid’s inequality [5], also known as the bounded differences
inequality, which itself generalizes an earlier inequality of Hoeffding [20]. McDiarmid’s inequality is by no means
the strongest concentration-of-measure inequality in theliterature, but is useful because of its simple hypotheses
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and proof. McDiarmid’s inequality and its variants have been used for uncertainty quantification in the context of
certification [8, 21, 22].

Define the McDiarmid diameter off , denotedD[f ], by

D[f ] :=

(
N∑

n=1

Dn[f ]2

)1/2

, (18)

where thenth McDiarmid subdiameterDn[f ] is defined by

Dn[f ] := sup{|f(x) − f(y)| | xj = yj for j 6= n}. (19)

WhenE[|f(X)|] is finite andX1, . . . , XN are independent, McDiarmid’s inequality bounds the deviations off(X)
from E[f(X)] in terms of the McDiarmid diameter off : for anyr > 0,

P[f(X) − E[f(X)] ≤ −r] ≤ exp

(
− 2r2

D[f ]2

)
, (20a)

P[f(X) − E[f(X)] ≥ r] ≤ exp

(
− 2r2

D[f ]2

)
. (20b)

McDiarmid’s inequality implies that, for anyθ ∈ R ∪ {±∞},

P[f(X) ≤ θ] ≤ exp

(
−2(E[f(X)]− θ)2+

D[f ]2

)
, (21a)

P[f(X) ≥ θ] ≤ exp

(
−2(θ− E[f(X)])2+

D[f ]2

)
, (21b)

where, fort ∈ R, t+ := max{0, t} andt− = −(−t)+. McDiarmid’s inequality (and similar inequalities such as
martingale inequalities) have the advantage that a bound onthe tails off(X) is obtained solely in terms of the mean
outputE[f(X)] and the McDiarmid diameterD[f ]. However, McDiarmid’s inequality cannot take advantage ofany
other properties off such as convexity or monotonicity; furthermore, iff has a infinite McDiarmid diameter on the
essential range ofX , then the trivial upper bound1 is obtained.

3.3 Other Concentration Inequalities

There is a large body of literature on other sources of concentration-of-measure inequalities: these include logarith-
mic Sobolev inequalities and the Herbst argument [23–25], the entropy method [26–28], and information-theoretic
methods [29, 30]. Of particular interest are those concentration results that apply to infinite-dimensional settings [31].

4. NORMAL DISTANCE

As noted above, efficient presentation of many concentration-of-measure inequalities relies on having an appropriate
notion of function variation (e.g., the Lipschitz norm or McDiarmid diameter) or distance (e.g., Talagrand’s convex
distance). The inequalities that will be established in Section 5 will be phrased in terms of a normal distance, which
will be introduced in this section, and is the distance that corresponds to the method of Chernoff bounds.

4.1 Definitions

Fix a functionΨ: X ∗ → [0, +∞] that is positively homogeneous of degree 1; i.e., such thatΨ(α`) = αΨ(`) for all
α ≥ 0 and all` ∈ X ∗. By analogy with the situation in finite-dimensional Euclidean space, in whichΨ = ‖ · ‖2 on
(RN )∗, define the distance from a pointx ∈ X to a half-spaceHp,ν ⊆ X by

d⊥,Ψ(x, Hp,ν) :=
〈ν, x − p〉+

Ψ(ν)
, (22)
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with the convention that0/0 = 0, since the distance fromx ∈ X to the trivial half-spaceHp,0 = X ought to be
zero. Note thatd⊥,Ψ(x, Hp,ν) = 0 wheneverx ∈ Hp,ν; note also that the homogeneity assumption onΨ ensures that
Eq. (22) is an unambiguous definition. We now generalize Eq. (22) to more general subsets ofX than half-spaces. The
heuristic is that the distance fromx to A ⊆ X should be the greatest possible distance [in the sense of Eq.(22)] from
x to any half-space that containsA; the existence of the degenerate half-spaceHp,0 ensures that the normal distance
is zero if there are no proper half-spaces that containA.

4.1.1 Definitions 1

Letx ∈ X andA ⊆ X . TheΨ-normal distance fromx toA, denotedd⊥,Ψ(x, A), is defined (with the same convention
that0/0 = 0) by

d⊥,Ψ(x, A) := sup

{ 〈ν, x − p〉+
Ψ(ν)

∣∣∣∣
p ∈ X andν ∈ X ∗

such thatA ⊆ Hp,ν

}
. (23)

TheΨ-normal distance fromA ⊆ X to B ⊆ X is defined byd⊥,Ψ(A, B) := infa∈A d⊥,Ψ(a, B). In the special case
X = RN andΨ = ‖ · ‖2 on (RN )∗, we shall simply writed⊥ for d⊥,Ψ; i.e.,

d⊥(x, A) := sup

{
[ν · (x − p)]+

‖ν‖2

∣∣∣∣
p ∈ RN andν ∈ (RN )∗

such thatA ⊆ Hp,ν

}
. (24)

Note well that the definition of the normal distanced⊥,Ψ(x, A) does not requireX to be normed; even whenX
is equipped with a norm‖ · ‖X andΨ is the corresponding operator norm, the normal distanced⊥,Ψ(x, A) is not the
same as the Hausdorff distance fromx to A defined by

dH(x, A) := inf{‖x − a‖X | a ∈ A}; (25)

(see Fig. 2 for an illustration). Note, also, that it is not generally true thatd⊥,Ψ(A, B) = d⊥,Ψ(B, A): consider, e.g.,
B := {(0, 1)} andA as in Fig. 2, in which case

d⊥,Ψ(A, B) = inf
a∈A

d⊥,Ψ(a, B) = 1 6= 0 = d⊥,Ψ(B, A).

For anyx ∈ X andA ⊆ B ⊆ X , it holds thatd⊥,Ψ(x, B) ≤ d⊥,Ψ(x, A). Furthermore, since a closed half-space
Hp,ν containsA if, and only if, it contains the closed convex hullco(A) of A, the following equality holds:

d⊥,Ψ(x, A) = d⊥,Ψ(x, co(A)) for all x ∈ X and allA ⊆ X . (26)

A

0

dH(0, A) d⊥(0, A)

FIG. 2: An example of a subsetA of the Euclidean planeR2 for which the normal distanced⊥(0, A) = 1 unit
(cf. the dashed line), as opposed to the Euclidean Hausdorff distancedH(0, A) = 2 units (cf. the dotted arc). Also,
dT(0, A) = 1, with the supremum in (15) being attained byw = (0, 1).
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4.2 Comparison of Normal and Talagrand Distances

A full comparison of the normal distance and Talagrand’s convex distance is not possible, since each belongs to a
different setting: Talagrand’s distance is defined on a product of sets, whereas the normal distance is defined on a
topological vector space that might not be a product space.

OnRN with its usual (product) Euclidean structure, the two distances can be compared. It is immediately apparent
that the two distances measure different quantities: in some sense,dT(x, A) measures how many of the coordinates
of x are covered byA, but does not measure the geometric distance between them; on the other hand,d⊥,Ψ(x, A) is
a much more geometric measure of how farx is from A in terms of linear functionals onX , and the “size” of those
linear functionals is measured byΨ. In particular, Talagrand’s convex distance is positivelyhomogeneous of degree
0, whereas the normal distance is positively homogeneous ofdegree 1: for anyx ∈ RN , A ⊆ RN , andα > 0,

dT(αx, αA) = dT(x, A),

d⊥,Ψ(αx, αA) = αd⊥,Ψ(x, A).

Indeed, for a half-spaceHp,ν ⊆ RN and weightw = (w1, . . . , wN ),

dw(0, Hp,ν) =

{
0, if x ∈ Hp,ν,

min{wn | νn 6= 0}, if x /∈ Hp,ν,

and, hence,dT(x, Hp,ν) = 1[x /∈ Hp,ν]: the supremum in Eq. (15) is attained by any weightw that haswn = 1 for
somen with νn 6= 0, andwn = 1 otherwise.

4.3 Portmanteau Theorem

The geometrical nature of the normal distance, in particular, formula (26), leads to the following equivalence or
“portmanteau” theorem for deviation inequalities with respect tod⊥,Ψ. In practice, as noted at the beginning of the
next section, these inequalities are unlikely to be sharp; their utility lies in the fact that they are geometrically easy to
work with.

4.3.1 Theorem 1

Fix Ψ: X ∗ → [0, +∞], homogeneous of degree 1, and letd⊥,Ψ be the corresponding normal distance. For anX -
valued random variableX and measurable functionf : X → R ∪ {±∞}, consider the inequalities

P[X ∈ A] ≤ exp

(
−d⊥,Ψ(E[X ], A)2

2

)
, (27)

P[f(X) ≤ θ] ≤ exp

(
−d⊥,Ψ(E[X ], f−1([−∞, θ]))2

2

)
. (28)

Then, the following formulations are equivalent:

1. Equation (27) holds for every half-spaceA = Hp,ν.

2. Equation (27) holds for every convexA ⊆ X .

3. Equation (27) holds for every measurableA ⊆ X .

4. Equation (28) holds for every measurablef : X → R andθ ∈ R ∪ {±∞}.

5. Equation (28) holds for quasiconvexf : X → R andθ ∈ R ∪ {±∞}.

6. Equation (28) holds for every continuous linearf : X → R andθ ∈ R ∪ {±∞}.

Note that iff is quasilinear, then formulation 5 yields concentration inequalities for both the lower and upper tails
of f(X).
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4.3.2 Proof of Theorem 1

The equivalence will be established by showing that

1 =⇒ 2 =⇒ 3 =⇒ 4 =⇒ 5 =⇒ 6 =⇒ 1.

Suppose that formulation 1 holds and thatK ⊆ X is convex. Then

P [X ∈ K]

≤ inf
Hp,ν⊇K

P[X ∈ Hp,ν] by monotonicity ofP,

≤ inf
Hp,ν⊇K

exp

(
−d⊥,Ψ(E[X ], Hp,ν)2

2

)
by formulation 1,

= exp

(
−1

2
sup

Hp,ν⊇K
d⊥,Ψ(E[X ], Hp,ν)2

)

= exp

(
−d⊥,Ψ(E[X ], K)2

2

)
by Eq. (23).

Hence, formulation 1 implies formulation 2.
Suppose that formulation 2 holds and thatA ⊆ X is measurable. Then

P[X ∈ A] ≤ P[X ∈ co(A)] sinceA ⊆ co(A),

≤ exp

(
−d⊥,Ψ(E[X ], co(A))2

2

)
by formulation 2,

= exp

(
−d⊥,Ψ(E[X ], A)2

2

)
by Eq. (26),

and so formulation 2 implies formulation 3. Formulation 4 follows from formulation 3 upon settingA := {x ∈ X |
f(x) ≤ θ}. Formulation 5 is clearly a special case of formulation 4. Every linear function has convex sublevel sets,
and so formulation 5 implies formulation 6. Formulation 1 follows from formulation 6 upon settingf := ν and
θ := 〈ν, p〉.

4.3.3 Remark 1

It is important to note that all the bounds in Theorem 1 may be trivial if the dual spaceX ∗ is not rich enough. For
example, given a measure space(Z, F , µ), for 0 < p < 1, the space

Lp(Z, F , µ; R) :=

{
f : Z → R

∣∣∣∣∣ ‖f‖p :=

(∫

Z

|f(z)|p dµ(z)

)1/p

< +∞
}

is a topological vector space with respect to the quasi-normtopology generated by‖ · ‖p. This space is not locally
convex and has a trivial dual space: the only continuous linear functional on this space is the zero functional, and so
the only closed half-space is the whole space. See, e.g., [32, Section 1.47] for further discussion of spaces such as
Lp([0, 1]; R) for 0 < p < 1.

It is tempting to eliminate these pathologies by working with the algebraic, instead of the topological, dual ofX .
This can be done, and most results go through mutatis mutandis; in particular, it is necessary to replace all references
to the closed convex hullco(A) of A ⊆ X with the convex hullco(A); the analog of Eq. (26) (withΨ now defined on
the algebraic dual ofX ) is

d⊥,Ψ(x, A) = d⊥,Ψ(x, co(A)) for all x ∈ X and allA ⊆ X .

The principal disadvantage of ignoring all topological structure onX is that there are no longer notions of interior,
closure, and frontier—although it still makes sense to discuss the extremal points of convex sets.
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5. NORMAL DISTANCE AS A CONCENTRATION RATE

The method of Chernoff bounding (reviewed in Lemma 1) gives bounds onP[X ∈ Hp,ν] in terms of the moment-
generating functionMX . If these bounds can be formulated in terms of a suitable normal distance, then Theorem 1
produces equivalent bounds for onP[X ∈ K] for convexK, onP[X ∈ A] for measurableA, and so on. As noted in
[2, Section 2], the best Chernoff bound onP[f(X) ≥ θ] is never better than the best bound using all the moments of
f(X): if f takes only non-negative values, then

inf
k∈N

θ−kE
[
f(X)k

]
≤ inf

s≥0
e−sθE

[
esf(X)

]
. (29)

However, Chernoff bounds have the advantage that they are geometrically very easy to handle.

5.1 Chernoff Bounds

The method of Chernoff bounds [13, 17, Section 7.4.3] is a simple one in which the probability of a subset ofX
is bounded by that of a containing half-space, and the probability of that half-space is bounded using the moment-
generating function of the probability measure.

5.1.1 Lemma 1: Chernoff Bounds

For any half-spaceHp,ν ⊆ X ,
P[X ∈ Hp,ν] ≤ inf

s≥0
es〈ν,p〉MX(−sν). (30)

For any convex setK ⊆ X ,
P[X ∈ K] ≤ inf

(p,ν)∈N∗K
e〈ν,p〉MX(−ν) (31a)

= exp

(
− sup

p∈K
(ΛX + χ−N∗

p
K)?(p)

)
. (31b)

In particular, for anyx ∈ X ,
P[X = x] ≤ exp(−Λ?

X(x)). (32)

5.1.2 Proof

By the definition of the half-spaceHp,ν,

P [X ∈ Hp,ν] = P [〈ν, X〉 ≤ 〈ν, p〉]
= E

[
1[〈ν,p−X〉≥0]

]

≤ E
[
es〈ν,p−X〉

]
for anys ≥ 0,

= es〈ν,p〉E
[
e〈−sν,X〉

]

≤ es〈ν,p〉MX(−sν).

Since this inequality holds for anys ≥ 0, taking the infimum over all suchs yields Eq. (30). Recall that the outward
normal cone to a convex set at any point is closed under multiplication by non-negative scalars; hence, for any con-
vex setK ⊆ X , taking the infimum of the right-hand side of Eq. (30) over half-spacesHp,ν that containK yields
Eq. (31a). Now observe that

inf(p,ν)∈N∗K e〈ν,p〉MX(−ν)

= inf(p,ν)∈N∗K exp[〈ν, p〉+ΛX(−ν)]

= exp
(
infp∈K infν∈N∗

p
K [〈ν, p〉 + ΛX(−ν)]

)

= exp
(
− supp∈K supν∈−N∗

p
K [〈ν, p〉 − ΛX(ν)]

)

= exp
(
− supp∈K(ΛX + χ−N∗

p
K)?(p)

)
,

which establishes Eq. (31b); Eq. (32) follows as a special case.
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5.2 Families of Gaussian Random Variables

The next result provides the normal distance for anX -valued Gaussian random variable (in fact, for a family of such
variables). In the special case of a single Gaussian random vectorX onX = RN with covariance operatorCX = σIN ,
Proposition 1 yields the classical Chernoff bound for a multivariate normal random variable.

5.2.1 Proposition 1

Let Γ be a family of Gaussian random vectors inX . For eachX ∈ Γ, let CX : X ∗ → X ∗∗ be its covariance operator
defined by

〈CX`, ν〉 := E [〈`, X〉〈ν, X〉] . (33)

Let E := {E[X ] | X ∈ Γ}, let
Ψ(ν) := sup

X∈Γ

√
〈CXν, ν〉, (34)

and letd⊥,Ψ be the corresponding normal distance. Then, for anyA ⊆ X ,

sup
X∈Γ

P[X ∈ A] ≤ exp

(
−d⊥,Ψ(E, A)2

2

)
. (35)

5.2.2 Proof

For eachX ∈ Γ, the moment-generating function forX is given by

MX(`) := E
[
e〈`,X〉

]
= exp

(
〈`, E[X ]〉 +

〈CX`, `〉
2

)
. (36)

Therefore,
P [X ∈ Hp,ν]

≤ inf
s≥0

exp

(
s〈ν, p − E[X ]〉 + s2 〈CXν, ν〉

2

)
by Eq. (36) and Lemma 1,

= exp

(
−〈ν, E[X ]− p〉2+

2〈CXν, ν〉2
)

≤ exp

(
−〈ν, E[X ]− p〉2+

2Ψ(ν)2

)
by Eq. (34),

= exp

(
−d⊥,Ψ(E[X ], Hp,ν)2

2

)
by Eq. (23).

Hence, by Theorem 1,

P[X ∈ A] ≤ exp

(
−d⊥,Ψ(E[X ], A)2

2

)
,

and so

sup
X∈Γ

P[X ∈ A] ≤ sup
X∈Γ

exp

(
−d⊥,Ψ(E[X ], A)2

2

)
= exp

(
− inf

X∈Γ

d⊥,Ψ(E[X ], A)2

2

)
= exp

(
−d⊥,Ψ(E, A)2

2

)
.

5.3 Families of Bounded Random Variables

Lemma 1 also has the following consequences for random vectors supported in a cuboid inRN ; this encompasses two
standard situations in which concentration is often studied, namely concentration for functions on the Euclidean unit
cube and on the Hamming cube.
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5.3.1 Proposition 2

Let X be a random vector inRN with independent components such that each componentXn almost surely takes
values in a fixed interval of lengthLn. Let

Ψ(ν) :=
1

2

√√√√
N∑

n=1

L2
nν2

n (37)

and letd⊥,Ψ be the corresponding normal distance. Then, for anyA ⊆ RN ,

P[X ∈ A] ≤ exp

(
−d⊥,Ψ(E[X ], A)2

2

)
. (38)

A fortiori, if X takes values in (a translate of) the unit cube[0, 1]N , then

P[X ∈ A] ≤ exp
(
−2d⊥(E[X ], A)2

)
, (39)

and ifX takes values in (a translate of) the Hamming cube{−1, +1}N , then

P[X ∈ A] ≤ exp

(
−d⊥(E[X ], A)2

2

)
. (40)

5.3.2 Proof

The proof is similar to the Gaussian case: it is an application of Lemma 1 and Hoeffding’s lemma [20, Lemma 1 and
Eq. (4.16)], which bounds the moment-generating function of Xn as follows:

MXn
(`n) := E [exp(`nXn)] ≤ exp

(
`nE[Xn] +

`2
nL2

n

8

)
.

Note that the claim also can be proved by applying McDiarmid’s inequality to the function〈ν, ·〉, which has mean
E[〈ν, X〉] = 〈ν, E[X ]〉 and McDiarmid diameter

√
L2

1 + · · · + L2
N .

5.3.3 Remark 2

Note the similarity between the normal distances of Propositions 1 and 2. In the Gaussian case, the norm onX ∗

is the one induced by the “largest” covariance operator in the family of random variablesΓ. In the bounded-range
case, the norm onX ∗ is the one induced by the largest covariance operator for random variables satisfying the range
constraint: ifX is a real-valued random variable taking values in an interval [a, b], thenΨ(ν)2 = (1/4)(b − a)2ν2

andVar[X ] ≤ (1/4)(b − a)2; this upper bound on the variance is attained by a Bernoulli random variable with law
(1/2)δa + (1/2)δb.

5.4 Functions of Empirical Means

The next result identifies the normal distance that corresponds to the concentration of a vector, the entries of which
are the empirical (sampled) means of functions of independent random variables.

5.4.1 Proposition 3

Forn = 1, . . . , N , let Zn := fn(Yn,1, . . . , Yn,K(n)) be a real-valued function of independent random variablesYn,k,
and suppose thatfn has finite McDiarmid diameterD[fn]. LetZ = (Z1, . . . , ZN ). Suppose that the random inputs of
eachfn are sampled independentlyM(n) times according to the distributionP and that the empirical average
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Ê[Z] =



 1

M(n)

M(n)∑

m=1

fn

(
Y

(m)
n,1 , . . . , Y

(m)
n,K(n)

)



N

n=1

∈ RN (41)

is formed. Then, for anyA ⊆ RN ,

P
[
Ê[Z] ∈ A

]
≤ exp

(
−d⊥,Ψ(E[Z], A)2

2

)
, (42)

whereΨ: (RN )∗ → [0, +∞) is given in terms of the McDiarmid diameters of the functionsf1, . . . , fN and the
sample sizesM(1), . . . , M(N):

Ψ(ν) :=
1

2

(
N∑

n=1

ν2
nD[fn]2

M(n)

)1/2

. (43)

5.4.2 Proof

Let Hp,ν ( RN be a half-space. Consider the real-valued random variable
〈
ν, Ê[Z]

〉
as a function of the sampled

input random variablesY (m)
n,k . Suppose that the McDiarmid subdiameter offn with respect toYn,k is Dn,k. Then

the McDiarmid subdiameter of
〈
ν, Ê[Z]

〉
with respect to themth sample ofYn,k is νnDn,k/M(n). Hence, the

McDiarmid diameter of
〈
ν, Ê[Z]

〉
is

√√√√
∑

k,n,m

ν2
nD2

n,k

M(n)2
=

√√√√
∑

n,m

ν2
nD[fn]2

M(n)2
=

√
∑

n

ν2
nD[fn]2

M(n)

Therefore, sincêE[Z] is an unbiased estimator forE[Z] (i.e.,E
[
Ê[Z]

]
= Ê[Z]), McDiarmid’s inequality (21a) implies

that

P
[
Ê[Z] ∈ Hp,ν

]
= P

[〈
ν, Ê[Z]

〉
≤ 〈ν, p〉

]
≤ exp

(
−

2 (〈ν, E[Z]〉 − 〈ν, p〉)2+∑N
n=1 (ν2

nD[fn]2)/M(n)

)

= exp

(
− 〈ν, E[Z] − p〉2+

2 · (1/4) ·∑N
n=1 (ν2

nD[fn]2)/M(n)

)
= exp

(
−d⊥,Ψ(E[Z], Hp,ν)2

2

)
.

The claim now follows from Theorem 1.
An example of the application of Proposition 3 is the following.

5.4.3 Example 1: Functions of Empirical Means

The Chernoff bounding method can be used to provide much-improved confidence levels for quantities derived from
many empirical—as opposed to exact—means. For example, consider the problem of [33, Section 5]: an input pa-
rameter spaceX is partitioned intoN sub-rectangles, and the probability that a function of interestφ : X → R takes
values belowθ ∈ R is bounded from above using the following variant of McDiarmid’s inequality:

P[φ ≤ θ] ≤
N∑

n=1

P(An) exp

(
−2(E[φ|An

] − θ)2+
D[φ|An

]

)
. (44)

Suppose, however, that the local (conditioned) meansE[φ|An
] are not known exactly; instead, through a finite number

of independent samples, the empirical meansÊ[φ|An
] are known. Givenα1, . . . , αN > 0, with what probability is it

true that
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P[φ ≤ θ] ≤
N∑

n=1

P(An) exp



−
2
(
Ê[φ|An

] + αn − θ
)2
+

D[φ|An
]



? (45)

Furthermore, consider the following problem of optimal allocation of sampling resources: suppose that all the
terms but the empirical meanŝE[φ|An

] are known, and that a prescribed total number of samples—M , say—are
available for sampling theseN means; how should thoseM samples be assigned to thoseN “bins” (i.e., to the
various subsetsAn) so as to maximize the probability that (45) holds true?

More generally, suppose thatH0 : RN → R is some function of interest: in particular, the quantity ofinterest
is H0 (E[Z1], . . . , E[ZN ]) for some absolutely integrable real-valued random variablesZ1, . . . , ZN . Bear in mind
that differentZn may be physically incomparable: for example,Z1 may have units of area,Z2 may have units of
temperature, and so on. Therefore, it is not immediately obvious how to combine such apparently incommensurable
uncertainties.

If the exact meansE[Zn] are unknown, then empirical meansÊ[Zn] may be used in their place if appropriate
confidence corrections are made. Suppose that “error” corresponds to concluding, based on the empirical means, that
H0(E[Z]) is smaller than it actually is. Givenα ∈ RN , set

Hα(z1, . . . , zN ) := H0(z1 + α1, . . . , zN + αN ). (46)

Therefore, given anyε > 0, we seek an appropriate “margin hit”α = α(ε) ∈ RN (typically, αn ≥ 0 for each
n ∈ {1, . . . , N}) such that

P
[
Hα

(
Ê[Z1], . . . , Ê[ZN ]

)
≥ H0 (E[Z1], . . . , E[ZN ])

]
≥ 1 − ε.

Dually, givenα ∈ RN , we seek a sharp upper bound on the probability of error; i.e., on

P
[
Hα

(
Ê[Z1], . . . , Ê[ZN ]

)
≤ H0 (E[Z1], . . . , E[ZN ])

]
.

If H0 (and, hence,Hα) is monotonic in each of itsN arguments andZ1, . . . , ZN are independent, then the
probability of non-error can be bounded from below as follows:

P
[
Hα

(
Ê[Z]

)
≤ H0(E[Z])

]
= P

[
Hα

(
Ê[Z]

)
≤ Hα(E[Z] − α)

]
≤∏N

n=1 P
[
Ê[Zn] ≤ E[Zn] − αn

]

≤ 1 −
N∏

n=1

[
1 − exp

(
−−2M(n)(αn)2+

D[fn]2

)]
.

Unfortunately, whenN is large, the last line of this inequality, typically, is close to zero unless the sample sizes are very
large, and so this bound is of very limited utility. Geometrically, this is analogous to the fact that a high-dimensional
orthant (product of half-lines) appears to be very narrow from the perspective of an observer at its vertex. In contrast,
half-spaces always fill a half of the observer’s field of view.To bound the probability of sublevel or superlevel sets
using half-spaces requiresHα to have some convexity—not monotonicity—properties.

If Hα is quasi-convex, then the bounds using normal distances canbe applied to good effect, and yield estimates
that actually perform better the largerN is. In particular, ifHα is both quasi-convex and differentiable, then the
outward normal to itst-level set at some pointp is just any positive multiple of the derivative ofHα at p, and this
yields the bound

P
[
Hα

(
Ê[Z]

)
≤ θ

]
≤ inf

p:Hα(p)≤θ

exp



−
2
(∑N

n=1 ∂nHα(p)(E[Zn] − pn)
)2

+∑N
n=1 [∂nHα(p)]2D[fn]2/M(n)



 . (47)
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In particular, takingθ = H0(E[Z]) = Hα(E[Z]−α) and evaluating the exponential in Eq. (47) atp = E[Z]−α ∈ RN

yields that

P
[
Hα

(
Ê[Z]

)
≤ H0(E[Z])

]
≤ exp



−
2
(∑N

n=1 ∂nHα(p)αn

)2

+∑N
n=1 {[∂nHα(p)]2D[fn]2}/M(n)



 . (48)

5.4.4 Remark 3

Formula (48) is particularly useful since it links the margin hits αn, the sample sizesM(n), and the maximum
probability of error. For example, given a desired level of confidence, margin hitsαn, and a total number of samples
M ∈ N, one can choose sample sizesM(1), . . . , M(N) that sum toM and minimize the right-hand side of Eq. (48);
this yields an optimal distribution of sampling resources so as to ensure thatHα

(
Ê[Z]

)
≥ H0(E[Z]) with the desired

level of confidence. That is, from the point of view of minimizing error probabilities, an optimal assignment of
sampling resources is given by the minimizer of the right-hand side of Eq. (48) among all(M1, . . . , MN ) ∈ NN

0 such
that

∑N
n=1 Mn = M .

6. HIGH-DIMENSIONAL ASYMPTOTICS

The topic of this section is the asymptotic sharpness of the bounds introduced above as the dimension of the space
X becomes large. We begin with a comparison of the McDiarmid and half-space bounds for a simple function: a
quadratic form onRN .

6.1 Example 2: Comparison with McDiarmid’s Inequality

The following example serves to illustrate how the half-space method can produce upper bounds on the measure of
suitable sublevel sets that are superior to those offered byMcDiarmid’s inequality; it also shows how this effect is
more pronounced in higher-dimensional spaces. Consider the following quadratic formQN onRN :

QN(x) :=
1

2

∥∥∥∥x −
(

1

2
, . . . ,

1

2

)∥∥∥∥
2

2

. (49)

For anyθ > 0, the sublevel setQ−1
N ([−∞, θ]) is simply a ball of radius

√
2θ about the point(1/2, . . . , 1/2). Suppose

that a random vectorX takes values in[−(1/2), +(1/2)]
N with independent components. McDiarmid’s inequality

[Eq. (21a)] implies that

P[QN(X) ≤ θ] ≤ exp



−8

(√
N

6
− θ√

N

)2

+



 ,

If also E[X ] = 0, then Proposition 2 implies that

P[QN (X) ≤ θ] ≤ exp

(
− (

√
N −

√
8θ)2+

2

)
.

For smallN and largeθ, McDiarmid’s bound is the sharper of the two. However, for small θ (and, notably, asN → ∞
for any fixedθ), the half-space bound is the sharper bound (see Fig. 3 for anillustration).

The previous example suggests that bounds constructed using the half-space method may perform very well in
high dimension but also that the sharpness of the bound may depend on “how round” the set whose measure we
wish to bound is. To fix ideas, suppose thatX = (X1, . . . , XN ) : Ω → RN is a random vector with independent
components, whereXn is supported on an interval of lengthLn. ForA ⊆ RN , how sharp is the bound

P[X ∈ A] ≤ exp

(
−d⊥(E[X ], A)2

2

)
? (50)
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FIG. 3: For the quadratic formQN onRN given in Eq. (49), a comparison of the McDiarmid upper bound (squares)
and half-space upper bound (triangles) onP[QN (X) ≤ θ] in the casesθ = 1/4 (dotted line and hollow polygons)
andθ = 1/8 (solid line and filled polygons).

First, note that sinced⊥(E[X ], A) = d⊥(E[X ], co(A)), the bound cannot be expected to be sharp ifA differs greatly
from its closed convex hull, and so it makes sense to restrictinvestigation to the case thatA = K, a closed and convex
subset ofRN . Second, it is not reasonable to expect the bound [Eq. (50)] on P[X ∈ K] to be sharp ifK is sharply
pointed; e.g., ifK is the narrow wedgeKε of angleε � 1 based ate1 := (1, 0, . . . , 0) in RN :

Kε :=

{
x ∈ RN

∣∣∣∣
(x − e1) · e1

‖x − e1‖2
≤ ε

}
. (51)

Therefore, we wish to consider the opposite situation in whichK has no sharp points, which will be made precise by
requiring thatK satisfy an interior ball condition.

Suppose that(p, ν) ∈ N∗K is such thatd⊥(x, Hp,ν) = d⊥(x, K). Suppose also thatBr(p − rω) ⊆ K, with
r > 0 andω ∈ RN a unit vector, is an interior ball forK at p ∈ ∂K (cf. Fig. 4). If the law ofX on RN is highly
singular, then it cannot be expected that the bound [Eq. (50)] is sharp, so suppose that the law ofX has a density with
respect to Lebesgue measure that is bounded above by some constantC > 0. Then, the bound [Eq. (50)] is

P[X ∈ K] ≤ exp

(
−2〈ν, E[X ]− p〉2+∑N

n=1 ν2
nL2

n

)
.

In the extreme case,K is precisely the closed ballBr(p − rω), theP measure of which is at mostCrNπN/2/Γ(1 +
N/2).

Hp,ν

K

� q

�p− rω

�

p

�

E[X ]

FIG. 4: An interior ball of radiusr for the closed convex setK at the frontier pointp. Necessarily,p is a point at
which ∂K is smooth;K admits no interior ball of positive radius at the vertexq. For convenience, the unit vector
ω ∈ RN has been identified withν ∈ N∗

pK ⊆ (RN )∗.
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In large deviations theory, the standard notion of asymptotic sharpness is logarithmic equivalence [15, Section I.1];
see, also, [14, 16] for surveys of the large deviations literature. Two sequences(αn)n∈N and(βn)n∈N are said to be
logarithmically equivalent, denotedαn ' βn, if

1

n
log αn − 1

n
log βn ≡ log

(
αn

βn

)1/n

→ 0 asn → ∞. (52)

Are the half-space bound [Eq. (50)] and the measure ofBr(p − rω) logarithmically equivalent? That is, does the
conditional probabilityP

[
X ∈ Br(p − rω)

∣∣X ∈ Hp,ν

]
, when raised to the power1/N , converge to1 asN → ∞?

To simplify the asymptotic expansions below, in all lines after the first two, we shall takeE[X ] = 0 andL1 = · · · =
LN = 1. Then,

1

N
log P

[
X ∈ Br(p − rω)

]
− 1

N
log (right-hand side of Eq. (50))

≤ 1

N

(
log

CrNπN/2

Γ(1 + N/2)
+

2〈ν, E[X ] − p〉2+∑N
n=1 ν2

nL2
n

)

=
2〈ν, p〉2−
N‖ν‖2

2

+
log(CrNπN/2)

N
− log Γ(1 + N/2)

N

which, by Stirling’s approximation for the Gamma function [34, p. 256, Eq. (6.1.37)], is approximately

≈ 2〈ν, p〉2−
N‖ν‖2

2

+
log(CrNπN/2)

N
− 1

N
log

(√
2π

1 + N/2

(
1 + N/2

e

)1+N/2
)

∼ 2〈ν, p〉2−
N‖ν‖2

2

+
log C

N
− 1

2N
log

4π

N
− 1 + N/2

N
log

N

2e

∼ 2〈ν, p〉2−
N‖ν‖2

2

+ log r − log
√

N

Note that〈ν, p〉−/‖ν‖2 ≤
√

Nd1(0, p), whered1 denotes the weighted Hamming distance with weightw =
(1, . . . , 1). Therefore, a necessary (but not sufficient) condition for the half-space bound to be asymptotically sharp
in the sense of logarithmic equivalence is thatr is of the same order as

√
N . That is, it is necessary thatK is suffi-

ciently round that it has an interior ball of radius comparable to
√

N at those frontier points where the normal distance
d⊥(E[X ], K) is attained.

Now suppose thatK = f−1([−∞, θ]) is a convex sublevel set for twice-differentiable functionf . Letη1, . . . , ηN−1, ν
be a basis ofRN such that

‖η1‖2 = · · · = ‖ηN−1‖2 = ‖ν‖2 = 1

and, for eachn ∈ {1, . . . , N − 1}, ηn is perpendicular toν. Suppose that, in this system of normal coordinates, near
p, the frontier ofK can be approximated by a parabola:

∂K =

{
y1η1 + . . . yN−1ηN−1 − yNν

∣∣∣∣∣ yN =

N−1∑

n=1

λny2
n

}

with λ1 ≥ λ2 ≥ · · · ≥ λN−1 ≥ 0. Then, the condition thatK admits an interior ball of radiusr atp is the inequality

r −

√√√√r2 −
N−1∑

n=1

y2
n ≥

N−1∑

n=1

λny2
n whenever

N−1∑

n=1

y2
n ≤ r2.

This, in turn, leads to the following condition onλ1: it must hold thatλ1 ≤ (1/2r). Put another way, the half-space
method cannot be expected to provide asymptotically sharp bounds forP[f(X) ≤ θ] if, whenf is approximated in
normal coordinates near the closest point off−1([−∞, θ]) to E[X ] by a non-negative quadratic form, that quadratic
form has an eigenvalue greater than(4N)−1/2.
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7. CONCLUSIONS

In this paper we have reviewed some well-established notions of distance and diameter in the concentration-of-
measure literature, and paid particular attention to the distance associated with the method of Chernoff bounds. In
so doing, we observe that associated with a deviation inequality that depends on a family of (exact) expected values,
there is a way to assign sampling resources to the estimationof those expected values that is both natural with respect
to the distance (concentration rate) and optimal with respect to error probabilities. We note, however, that this optimal-
ity is with respect to the deviation inequality that is beingestimated: if the deviation inequality itself is not sharp,then
the “optimal” sampling assignment will have a similarly non-sharp character. Hence, we expect that the full power of
this approach is contingent upon applying it to optimal concentration-of-measure inequalities, as in [35, 36]
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