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In safety engineering, performance metrics are defined using probabilistic risk assessments focused on the low-
probability, high-consequence tail of the distribution of possible events, as opposed to best estimates based on central
tendencies. We frame the climate change problem and its associated risks in a similar manner. To properly explore the
tails of the distribution requires extensive sampling, which is not possible with existing coupled atmospheric models
due to the high computational cost of each simulation. We therefore propose the use of specialized statistical surrogate
models (SSMs) for the purpose of exploring the probability law of various climate variables of interest. An SSM is
different than a deterministic surrogate model in that it represents each climate variable of interest as a space/time
random field. The SSM can be calibrated to available spatial and temporal data from existing climate databases, e.g., the
program for climate model diagnosis and intercomparison (PCMDI), or to a collection of outputs from a general circu-
lation model (GCM), e.g., the community Earth system model (CESM) and its predecessors. Because of its reduced size
and complexity, the realization of a large number of independent model outputs from an SSM becomes computationally
straightforward, so that quantifying the risk associated with low-probability, high-consequence climate events becomes
feasible. A Bayesian framework is developed to provide quantitative measures of confidence, via Bayesian credible in-
tervals, in the use of the proposed approach to assess these risks.

KEY WORDS: Bayesian analysis, climate model, Karhunen-Loéve expansion, non-Gaussian random field,
risk analysis

1. INTRODUCTION AND MOTIVATION

The US Climate Change Research Program’s (CCRP) long-term performance measure is to “deliver improved sci-
entific data and models about the potential response of the Earth’s climate and terrestrial biosphere to increased
greenhouse gas levels for policy makers to determine safe levels of greenhouse gases in the atmosphere.” One inter-
pretation of this goal is that: (1) there is a well-defined threshold above which levels of greenhouse gases are “unsafe;”
(2) this threshold is possible to determine; and (3) the Earth’s climate has not yet crossed the threshold. The CCRP
meaning of “safe” is presumed to be the level “that would prevent dangerous anthropogenic interference with the
climate system” referenced by the 1992 United Nations Framework Convention on Climate Change (UNFCCC) [1].
Schneider and Lane [2] proposed metrics for dangerous climate change, which spanned the sustainability measures
of water, energy, health, agriculture, and biodiversity, and included risks associated with extreme weather events and
irreversible cascading chains of events beyond “tipping points.” As a consequence, we are motivated by metrics as-
sociated with high-consequence climate changes, which we define as the changes that would be experienced if the
true climate sensitivity is in the upper tail of its underlying probability distribution. Climate sensitivity is commonly
defined as the change in the global mean surface temperature after the climate system has reached a new equilibrium
in response to a doubling of the CO2 concentration in the atmosphere.
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The large and growing body of literature on global climate change is mostly written from a scientific perspective
that focuses on the most probable future. A scientific approach is the most appropriate method for gaining understand-
ing of natural systems by applying physically sound theory, empirical observations, and validated models. Scientifi-
cally conservative estimates are the ones that deviate the least from prior expectations. Scientific conservatism, when
applied to climate change, tends to downplay the degree of change, and virtually all the climate change literature uses
the term “conservative” in the opposite sense from that of safety engineers. The common approach is to generate prob-
ability density functions (PDFs) that encapsulate the best estimate of the future, plus some bounds on its uncertainty.
The lower bound on expected climate change is the scientifically conservative estimate.

The Intergovernmental Panel on Climate Change (IPCC) reports present climate forecasts as assessments of the
most probable future, with the tendency to err on the side of scientific conservatism. For example, the Fourth Assess-
ment Report (AR4) of the IPCC provides a graph of “warming by 2090–2099 relative to 1980–1999 for non-mitigation
scenarios” in terms of “best estimate and likely ranges of warming.” “Likely” is defined by the AR4 as an outcome
that occurs with a probability of more than 66%. Thus, the ranges provided by the IPCC for various scenarios tend to
be of the most interest to decision makers because they are the most probable. Unfortunately, they are often treated
as accurate forecasts to be used as the basis for informing policy decisions, as opposed to using high-consequence
forecasts as suggested by Palmer [3].

The development of methods to quantify the uncertainty in climate sensitivity (and other climate system response
characteristics) is a topic of ongoing research. Some assessments result in the generation of PDFs rather than the
simple “likelihood bounds” as provided by the IPCC. These studies consistently show that the high-end sensitivities
have a significant probability. For example, Forest et al., [4], give a 5%-to-95% confidence interval of 1.4◦C to 7.7◦C
climate sensitivity with a distribution that is strongly skewed with a sharp cutoff at the low end and a fat tail at the high
end. The sharp low-end cutoff is expected, because the best understood feedback in terms of normalized uncertainty
(e.g., standard deviation divided by best estimate) is water vapor, and is strongly positive. Other feedbacks (clouds,
albedo, and lapse rate) are not as well understood and have high uncertainty by comparison; see, for example, [5,
Section 8.6.2.3]. Andronova and Schlesinger [6] calculated a distribution with a 10% probability of climate sensitivity
greater than 6.8◦C. Skewed distributions with a high-sensitivity tail are characteristic of climate sensitivity PDFs, and
Roe and Baker [7] argue that such skewness is an inevitable consequence of the nature of the climate system and the
inherent uncertainty in the feedbacks. More recent research suggests that the upper bound of the confidence interval in
climate sensitivity may also have been underestimated [8] due to compensating feedbacks assumed in previous studies.
This interpretation further suggests the need for a safety engineering approach to characterize the mechanisms that
can lead to high sensitivity.

Murphy et al. [9] used the ensemble method in a “perturbed physics” approach, which systematically varied 29
model parameters to determine a probability distribution function that has a 5% to 95% range of 2.4◦C to 5.4◦C, with a
median of 3.5◦C and a most probable value of 3.2◦C. This sophisticated analysis makes use of more advanced models
and is consistent with the transient effects of climate change and forcing. Processes that determine climate sensitivity
are varied systematically and uncertainties are weighted according to an objective index, described by Murphy et al.,
as “a measure of reliability that can be used to weight different GCMs according to the estimated relative likelihood
that they will correctly predict climate change in the real world,” were “GCMs” are general circulation models.
However, the perturbed physics approach is prohibitively expensive in many cases due to the cost of the coupled
climate model. In practice, one must construct a cheaper surrogate of a quantity of interest—say surface temperature
or precipitation—whose samples are used to approximate statistics. Constructing a surrogate model from scattered
data poses challenges for many existing techniques. In what follows, we propose a translation random field surrogate
for a quantity of interest tuned to a set of output data from a coupled climate model. With this surrogate, we are able
to explore tail probabilities of the quantity of interest that are essential to formal study of the consequences of the
changing climate system.

This paper illustrates a general procedure for calibrating a statistical surrogate model to available data from large
computer models for Earth climate. Our use of the phrase “climate change” does not necessarily imply a time-
dependent model. The data used to calibrate the statistical models in the examples that follow are taken from specific
time periods of a climate model. We treat temporal samples as independent samples when calibrating the model. The
statistical model is therefore valid for the period of time indicated by the data and is not explicitly time-dependent.
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However, one common way to characterize the magnitude of climate change is to “spin up” an equilibrium “doubled-
CO2” model run, and to determine what the climate would be with twice the preindustrial level of CO2 compared to
what it would be otherwise. The spin-up time, in which the climate is changing with time, is not usually the part of
the problem that is of interest. It is the stable, time-independent “equilibrium” climate that receives the most study.

The outline of our paper is as follows. The statistical surrogate model (SSM) is developed in Section 2, with
emphasis on calibration of the SSM to available data, the use of the SSM to make predictions, and the development
of Bayesian methods to assess model credibility. The general framework is then applied to two different climate
variables of interest in Section 3: global mean surface temperature and precipitation rate. The main purpose of our
paper is to illustrate how statistical surrogate models and, in particular, translation random fields, can be calibrated to
available data from large computer models for Earth climate. This has not been done before to our knowledge. We feel
strongly that due to the ever-increasing size and complexity of climate models, the decision-making process cannot
be fully integrated in the near term with these models, and the use of surrogates like the one proposed herein becomes
necessary.

2. STATISTICAL SURROGATE MODEL FOR CLIMATE VARIABLES

Let A(λ, φ, z) denote a climate variable of interest, e.g., temperature, precipitation rate, total cloud fraction, etc.,
where0 ≤ λ < 2π, −π/2 ≤ φ < π/2, andz ≥ 0 are spatial coordinates denoting longitude, latitude, and geodesic
altitude, respectively. To simplify notation, we useu = (λ, φ, z)T ∈ D = [0, 2π) × [−π/2, π/2) × [0,∞) to
collectively represent all spatial coordinates and simply writeA(u), u ∈ D.

Oftentimes there is parametric uncertainty in climate model parameters, which propagates to model outputs. In
addition, the chaotic nature of the equations describing climate physics can lead to variability in response. To represent
this variability and uncertainty in climate variables, we modelA(u) as a random field, that is,A(u) is a random
variable for every fixedu ∈ D. Hence,A = A(u, ω) also depends on the additional argumentω ∈ Ω, whereΩ
represents the appropriate sample space ofA. It is common practice to omit the explicit depiction of the functional
dependence ofA on ω and we shall do so here. Further, our convention is to use a capital letter or symbol to denote
any random quantity; lowercase letters and symbols are reserved for deterministic quantities.

Our objective is to develop a class of surrogate models forA that can be used to make defensible predictions about
the probability of various climate change scenarios of interest. Special emphasis is placed on the tails of the probability
distribution, the calibration of the surrogate model to available data from current and future runs of complex climate
models, and to providing a quantitative measure of confidence in any model predictions. Throughout the discussion
we assumeA is a scalar quantity; the approach can be extended to represent vector-valued climate variables.

2.1 Model Definition

Let G(u) be a real-valued Gaussian random field with zero mean, unit variance, and covariance functionc(u,v) =
E[G(u)G(v)], where E[X] denotes the expected value of random variableX. We modelA by a monotonic transfor-
mation ofG of the following form

A(u) = F−1
A ◦ Φ [G(u)] , (1)

whereFA = FA[a|θ(u)] is an arbitrary cumulative distribution function (CDF) that depends on parameter vector
θ ∈ Rd, andΦ is the CDF of aN(0, 1) random variable, that is, a Gaussian or normal random variable with zero mean
and unit variance. We note that the value forθ generally depends on spatial locationu ∈ D. Herein, we assumeFA is
absolutely continuous, that is, we assume there exists an integrable functionfA such thatfA(a|θ) = dFA(a|θ)/da is
a probability density function (PDF). It can be shown that the random fieldA has marginal, or first-order, CDFFA and
marginal, or first-order, PDFfA. That is, given the following finite dimensional distributions of random fieldA(u):

Fm(a1, . . . , am;u1, . . . ,um) = Pr[(u1) ≤ a1 ∩ · · · ∩A(um) ≤ am],
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the marginal CDF is [10, p. 375]

F1(a1,u1) = Fm(a1,+∞, . . . , +∞;u1, . . . ,um).

This class of model defined by Eq. (1) is a special type of non-Gaussian random field referred to as a translation
random field (see [11, Section 3.1.1] and [12]); it is common to refer toG as the Gaussian image ofA. We note
that the class of models defined by Eq. (1) forms a subclass of all non-Gaussian random fields, and is defined by the
second-moment properties and marginal (or first-order) distribution function. The restriction of this class is that these
models cannot represent information from higher-order distributions functions (second-order, third-order, and so on).
However, robust estimates of these distributions are very difficult to obtain in many instances. Often, in our experience,
information on the random field to be modeled is limited to second-moment properties and marginal distribution.

By careful selection of the properties ofG, as well as the functional form ofFA and its parametersθ, it is possible
to calibrateA to match statistical estimates of the mean, covariance, and marginal probability distribution functions of
a climate variable of interest. The translation random field model defined by Eq. (1) is a very flexible model and has
proved effective for a variety of applications in stochastic mechanics (see, for example, [13, 14]) and the modeling of
various environmental phenomena [15, 16].

2.2 Model Calibration

Let zk(u), k = 1, . . . , n, denote the available data onA, that is, results from a sequence of climate model calculations.
We usez = [z1(u), . . . , zn(u)]T to represent the collection of available data to simplify notation. Calibration of the
random field model defined by Eq. (1) toz requires three steps:

1. Choose the functional form forFA, the marginal CDF ofA defined by Eq. (1).

2. Calibrateθ, the associated parameters ofFA.

3. Construct the covariance functionc(u,v) of G, the Gaussian image ofA.

The objective of step 1 is to select a marginal distribution functionFA that is sufficiently flexible to capture
any desired behavior observed in the dataz, and is consistent with the known physics. For example, ifA models
precipitation rate, the distribution function must have support on the positive real line with positive skewness; the
lognormal distribution satisfies these constraints and is often used to model precipitation rate [17].

Calibration of parametersθ = (θ1, . . . , θd)T to be consistent with available dataz, that is, step 2 of the calibration
procedure, can be completed by one of two methods: the method of moments, or the method of maximum likelihood
[18, Chapter 6]. For the former, we chooseθ = θ̂ such thatfA(a|θ̂) satisfies

∫

R
aq fA(a|θ̂) da =

1
n

n∑

k=1

(zk)q
, q = 1, . . . , d. (2)

For the latter, we chooseθ = θ̂ that maximizes

l(z|θ) =
n∏

k=1

fA(zk|θ), (3)

wherel(z|θ), viewed as a function ofθ, represents the likelihood that the data have PDFfA(a|θ). We note that by
either method, the calibrated value forθ generally depends onu ∈ D.

Upon completion of steps 1 and 2 in the calibration procedure, the available data onA can be mapped to available
data onG, i.e., gk(u) = Φ−1 ◦ FA[zk(u)|θ̂], k = 1, . . . , n. The objective for step 3 of the calibration procedure
is to construct covariance functionc(u,v) = E[G(u)G(v)] of G, a Gaussian random field with zero mean and unit
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variance, that is consistent with the data{gk(u), k = 1, . . . , n}. One approach is to utilize the Karhunen-Loéve (K-L)
representation for a Gaussian random field, i.e.,

G(u) =
∑

k≥1

√
ζk ψk(u)Wk, u ∈ D, (4)

where{ζk, ψk(u), k ≥ 1} are the eigenvalues and eigenfunctions, respectively, ofc(u,v) = E[G(u)G(v)], and
satisfy the integral equation

∫

D

c(u,v) ψk(v) dv = ζk ψk(u), (5)

and{Wk, k ≥ 1} is a collection of independent and identically distributed (iid)N(0, 1) random variables. In practice,
the infinite sum defined by Eq. (4) is truncated atr ≥ 1 terms; we refer to the truncated sum as the K-L approximation
for G. Calibration of the K-L approximation model requires a method to choose: (i)r, the number of terms retained
in the sum, and (ii) the associated eigenvalues and eigenvectors,[ζk, ψk(u)], k = 1, . . . , r. An efficient method to do
this based on the the singular value decomposition of a matrix containing the available data{gk(u), k = 1, . . . , n} is
presented in Appendix A.

2.3 Model Prediction and Credibility

Let h[A(u)] be a particular property ofA that is of interest, e.g., a functional of climate field data such as the extreme
or average value. Our objective is to predict values for

p(θ,u) = Pr
{
h[A(u)] ∈ Sh | θ(u)

}
=

∫

{a : h(a)∈Sh}
h(a) fA(a|θ(u)) da, (6)

whereSh denotes an appropriate “safe set,” that is, a set such that if the quantity of interesth[A(u)] remains within
Sh, there is no cause for alarm. We note that it is oftentimes more useful to report values for1− p which correspond
to the probability that the quantity of interest departs from the safe set. The concept of a “tipping point” described in
climate literature [19] is an example of the boundary of a safe set for this study.

Exact solutions to the integral defined by Eq. (6) do not exist in general. However, because generating a large
number of samples from the surrogate model is computationally inexpensive, we can make use of straightforward
Monte Carlo simulation to estimate the value for the integral in Eq. (6) with high accuracy. Further, as indicated by
Eq. (6), our predictionp depends on the parameter vectorθ which, due to limited data, is also uncertain. We can
handle this issue in one of two ways, as described in Sections 2.3.1 and 2.3.2.

2.3.1 Point Estimates

The calibrated model forA can be used directly to provide point estimates forp defined by Eq. (6). Let̂p denote an
estimate forp. This estimate can be achieved by the following steps:

1. Generatem À 1 samples of the calibrated K-L approximation forG using a truncated version of Eq. (4).

2. Translate each sample ofG using Eq. (1) withθ replaced bŷθ defined in Section 2.2.

3. Evaluate the quantity of interest for each sample ofA, herein denoted byhk, k = 1, . . . ,m.

The point estimate forp defined by Eq. (6) is then given by

p̂ =
1
m

m∑

k=1

1(hk ∈ Sh) , (7)

where1( · ) denotes the indicator function, i.e.,1(B) = 1 if eventB is true and is zero otherwise.p̂ defined by Eq. (7)
is an unbiased estimator forp and improves with increasingm. Hence, the point estimate can be made very accurate
because generating many samples of the surrogate model (largem) is inexpensive.
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2.3.2 Bayesian Approach

The approach of the previous section provides only point estimates forp defined by Eq. (6). We have limited confi-
dence in these estimates because we have limited data onA, and we would like to quantify our level of confidence in
some manner. One approach is to instead treatθ ∈ Rd, the parameters of the marginal CDF ofA, as a random vector
and apply a Bayesian approach. Bayesian credible sets can then be used to quantify prediction confidence.

Let Θ be a random vector withd coordinates and supportDΘ ⊂ Rd representing the uncertain parameters ofFA

defined by Eq. (1). Given a prior PDF, denoted byfΘ(θ), that describes our knowledge ofΘ prior to studying the
available data, the posterior PDF forΘ given the data is [20, Section 2.1]

fΘ|z(θ|z) ∝ l(z|θ) fΘ(θ), (8)

wherez = [z1(u), . . . , zn(u)]T denotes the available data on the climate variable of interest,l denotes the likelihood
function defined by Eq. (3), and the∝ symbol is used to denote that the left and right sides of Eq. (8) are equal to
within a normalizing constant.

With θ replaced byΘ, the conditional probabilityp(Θ) defined by Eq. (6) is a random variable taking values
in [0, 1]. It is possible to find the probability thatp(Θ) belongs to any subsetC of [0, 1]; this probability is equal to∫

CΘ
p(θ) fΘ|z(θ|z) dθ, whereCΘ = {θ ∈ DΘ : p(θ) ∈ C}. In particular, the100(1−α)% credible set forp(Θ) is

the setC such that [21, Section 4.3.2]

1− α ≤
∫

{θ∈DΘ : p(θ)∈C}
fΘ|z(θ|z) dθ. (9)

For the special case when random variablep(Θ) has unimodal density, the credible set can be expressed as a credible
interval, i.e., C = [a, b]. Additional constraints are, in general, needed to make the setC unique. For example, we
can chooseC such that the interval where the probability of being below the interval is as likely as being above it,
or we can chooseC such that the mean value is the central point. The latter is the constraint we will employ in the
examples that follow.

The implementation of the Bayesian approach described in this section is as follows:

1. PostulatefΘ(θ), the prior PDF for model parametersΘ; noninformative priors [20, Section 2.3] may be used
for the case when no information onfΘ(θ) is available.

2. Compute the likelihood function and posterior PDF forΘ using Eq. (8).

3. Drawm1 À 1 independent samples of random vectorΘ from fΘ|z(θ|z); Markov chain Monte Carlo methods
can be used for this step [22, 23].

4. For each sampleθk of Θ, k = 1, . . . , m1, drawm2 independent samples fromfA(a|θk).

5. Utilize the procedure in the previous section to estimate

p̂k =
1

m2

m2∑

j=1

1(hk,j ∈ Sh), (10)

wherehk,j denotes thejth random sample drawn fromfA(a|θk).

6. Estimate the endpoints of the100(1− α)% credible interval forp(Θ), denoted bŷa ≤ b̂, whereâ andb̂ satisfy

1
m1

m1∑

k=1

1(p̂k ≤ â) =
α

2

1
m1

m1∑

k=1

1(p̂k > b̂) = 1− α

2
. (11)
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We conclude this section by noting that we have ignored any uncertainty in the parametric description of the
Gaussian image ofA, that is, in the eigenvalues and eigenvectors of the K-L approximation forG defined by Eq. (4).
In principle, it is possible to include this information in the Bayesian approach outlined above if necessary.

3. APPLICATION TO CCSM DATA

To illustrate the use of the statistical surrogate model for climate variables developed in Section 2, we consider two
collections of output from the Community Climate System Model (CCSM) v3.0, a fully coupled global climate model
sponsored by the National Center for Atmospheric Research (NCAR). The first collection, presented in Section 3.1,
corresponds to average December surface temperature for years 1990–1999 based on a collection of eight different
model runs. We calibrate the surrogate model to the available model data and make various point predictions that
may be of interest. The eight different model runs correspond to expert-tuned climate scenarios from the CCSM3.
These models were included in the Coupled Model Intercomparison Project 3 [24], and their output is stored on the
PCMDI multimodel database [25]. As is common in multimodel ensembles, we treat each run as an independent
sample from an unknown distribution of climate scenarios for analysis purposes. The data from Section 3.1 are the
average December surface air temperature from the years 1990 through 1999 for each of these eight runs. By the
ergodic assumption commonly employed in climate models, we treat each year as a statistically independent sample.
Therefore, in total we have 80 samples of the average December temperature over the globe for the period of 1990
through 1999.

In Section 3.2, we study average monthly precipitation rate over a 54-year period assuming a “cyclic Y2K ocean
model.” The observations are collected by averaging the precipitation rates over a month for June, July, and August;
any variance in the year-to-year results is due to the chaotic nature of the model. We apply the calibrated surrogate
model to study the probability that the precipitation rate falls below certain thresholds, then utilize the Bayesian
approach described in Section 2.3.2 to quantify our confidence in these predictions.

3.1 Surface Temperature

In this section, the available data consist of eight different model runs over the 10-year period 1990 to 1999, as
described above. We get one realization of the average December surface temperature field for each year, resulting
in a total of 80 observations. Letzk(u), k = 1, . . . , n = 80 denote the available surface temperature data; Fig. 1
illustrates the first data setz1(u) as contours of average surface air temperature as a function of longitude,λ, and
latitudeφ. The spatial grid is defined at lines of longitude and latitude with 1.4 degree spacing. Coordinatesλ andφ
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FIG. 1: First CCSM data set: average surface air temperature during December (from [25]).
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representing longitude and latitude were discretized into 256 and 128 points, respectively, yielding a grid with 32,768
points. Upon inspection, we find that the data exhibit considerable skewness, i.e., the probability distribution of
surface temperature is not symmetric about its mean value, and the degree of skewness changes with spatial location.
An estimate of the coefficient of skewness is given by [26, p. 19]

γ̂3(u) =
n
√

n− 1
n− 2

∑n
k=1 [zk(u)− µ̂(u)]3

(∑n
k=1 [zk(u)− µ̂(u)]2

)3/2
(12)

whereµ̂(u) = (1/n)
∑n

k=1 zk(u) is an unbiased estimator for the mean surface temperature. The coefficient of skew-
ness of the data is illustrated by Fig. 2. Regions of large positive skewness, e.g., parts of South America, correspond to
locales where infrequent but large increases in temperature can be expected. It therefore seems appropriate to choose a
non-Gaussian distribution that is able to match the large range of observed skewness exemplified by Fig. 2. In regions
with near-zero skewness, a Gaussian distribution may be adequate.

Because of these observations, we chooseFA to be the CDF of a generalized version of the Gaussian distribution
[27], that is,FA(a|θ) =

∫ a

−∞ fA(ξ|θ) dξ, where

fA(a|θ) =
1√

2π [θ2 − θ3(a− θ1)]
e−y2/2, (13)

is the corresponding PDF,θ = (θ1, θ2, θ3)T is a vector of model parameters with supportθ1,θ3 ∈ R, θ2 > 0 and,
assumingθ3 6= 0,

y = − 1
θ3

ln
(

1− θ3(a− θ1)
θ2

)
.

The CDF and PDF defined by Eq. (13) are illustrated by Figs. 3(a) and 3(b), respectively, for various values of
parametersθ1, θ2, andθ3, which yields positive, negative, and zero skewness, denoted byγ3 > 0, γ3 < 0, and
γ3 = 0, respectively, in the figure. We apply the method of maximum likelihood to estimate values for the model
parametersθ(u); see Section 2.2 and Appendix B.

For illustrative purposes, we make point predictions for two potential climate change scenarios of interest. First,
we develop an estimate of

p1 = Pr {h1[A(u)] ∈ S1} = Pr
[
Ā(u) ≤ 2

]
, (14)
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FIG. 2: Sample coefficient of skewness of all CCSM surface air temperature data.
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FIG. 3: Generalized normal distribution with positive (γ3 = 2), negative (γ3 = −1), and zero (γ3 = 0) coefficients
of skewness: (a) the PDFs, and (b) the CDFs. Each has zero mean and unit variance. Forγ3 = 0, FA is a Gaussian
distribution.

whereĀ(u) = {A(u) − E[A(u)]}/
√

Var[A(u)]) is a random field with zero mean and unit variance. By Eq. (14),
1 − p1 corresponds to the probability thatA will exceed the so-called “2-σ level” and is illustrated by Fig. 4 as a
function of latitude and longitude. This result illustrates a point estimate of the probability of higher than average
air temperature during December, based on the available CCSM data and assumed model form. Since time has been
omitted, these results should not be interpreted as a forecast of the likelihood of future warming.

Next letD′ ⊂ D be a region of interest whose boundary is defined by lines of longitude 170◦ and 240◦ and lines
of latitude−30◦ and 30◦ (this corresponds roughly to the Pacific Ocean). Suppose the maximum average surface
temperature withinD′ is a quantity of interest so that

p2 = Pr {h2[A(u)] ∈ S2, ∀u ∈ D′} = Pr
(

max
u∈D′

A(u) ≤ t

)
. (15)

Figure 5 illustrates a point estimate of1−p2 as a function of temperaturet; the estimate is based on 20,000 independent
samples ofA, the statistical surrogate model calibrated for average surface temperature.
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FIG. 5: Estimate of exceedance probability defined by Eq. (15) using the statistical surrogate model calibrated for air
surface temperature: (a) histogram of 20,000 Monte Carlo samples ofmaxu∈D′ A(u), and (b) corresponding estimate
for 1− p2.

3.2 Precipitation Rate

The proposed statistical surrogate model has also been calibrated to CCSM model predictions of precipitation rate.
This data set consists of monthly average precipitation rates for June, July, and August, over a 54-year period. Let
zk(u), k = 1, . . . , n = 162 denote the available data on precipitation rate; Fig. 6 illustratesz1(u) in units of mm/h as a
function of longitude,λ, and latitudeφ. As mentioned, the lognormal distribution is often used to model precipitation
rate [17]; the corresponding PDF is given by

fA(a|θ1,θ2) =
1√

2π θ2 a
e−(ln a−θ1)

2/(2 θ2
2), a > 0, (16)

whereθ1 ∈ R andθ2 > 0 are model parameters.
We first consider point estimates of

p3 = Pr
[
Ā(u) ≤ −1

]
, (17)

whereĀ is defined by Eq. (14);p3 corresponds to the probability that the precipitation rate will be equal to or less
than the “1-σ level.” Figure 7 illustrates an estimate ofp3 using the surrogate model calibrated to the available data;
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FIG. 6: First CCSM data set: precipitation rate during June, July, August.
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FIG. 7: Estimate of exceedance probabilityp3 = Pr
(
Ā ≤ −1

)
using the statistical surrogate model calibrated for

data on precipitation rate.

this result illustrates a point estimate of the probability of drier than average conditions. Estimates of the model
parameterŝθ1 = n−1

∑n
k=1 ln zk and θ̂2

2 = n−1
∑n

k=1(ln zk − θ̂1)2 are obtained using the method of maximum
likelihood, Eq. (3).

A more useful result for the assessment of risk is to apply the Bayesian analysis described in Section 2.3.2. We
predict

p4(ρ) = Pr [A(u) ≤ ρ] , (18)

the probability that the precipitation rate is less than or equal to thresholdρ, and provide a measure of confidence on
our predictions ofp4 as a function ofρ. To simplify the discussion, we present such an analysis for a fixed spatial
location, i.e., a fixedu ∈ D, that is roughly located at the city of Albuquerque, New Mexico. The analysis can be
generalized to consider the entire domainD, but we focus here on a single grid point to clarify the discussion.

Following the procedure outlined in Section 2.3.2, we first modelθ = (θ1, θ2)T , the parameters of the lognormal
PDF defined by Eq. (16), asΘ = (Θ1, Θ2)T a random vector with independent coordinates and noninformative prior
PDF

fΘ(θ1, θ2) ∝ const, θ1 ∈ R,θ2 > 0. (19)

Given the available CCSM data on precipitation rate,z, application of Eqs. (8) and (16) yields the posterior PDF for
the model parameters, i.e.,

fΘ|z(θ1,θ2|z) ∝ θ−n
2 exp

(
− n

2 θ2
2

(
ŝ2 − 2µ̂θ1 + θ2

1

))
, θ1 ∈ R, θ2 > 0, (20)

whereµ̂ = n−1
∑n

k=1 ln zk and ŝ2 = n−1
∑n

k=1(ln zk)2 denote the sample mean and sample mean square of the
natural log of the data. The posterior PDF forΘ is illustrated by Fig. 8(a).

Following step 3, the Markov chain Monte Carlo (MCMC) method [23] was used to draw 10,000 independent
samples of random vectorΘ from fΘ|z(θ1,θ2|z) defined by Eq. (20). These samples are illustrated by Fig. 8(b); level
contours of the posterior PDF are also plotted to illustrate the performance of the MCMC method.

We next apply steps 4–6 from Section 2.3.2 to calculate the100(1 − α)% Bayesian credible interval forp4

defined by Eq. (18); for calculations, we assumeα = 0.1. Two cases are studied, as illustrated by Figs. 9(a) and
9(b), respectively. In each case, the estimate ofp4(ρ) is denoted by a blue solid line, while the corresponding 90%
Bayesian credible intervals are illustrated by red dashed lines. In panel (a), we restrict the analysis to roughly half
of the available data points. The resulting credible intervals are wider, indicating a lower degree of model credibility
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when compared to panel (b), which corresponds to the same analysis based on the full data set. In addition, we note
that the width of the credible intervals changes withρ. Figures 7 and 9 illustrate the chance of drier than average
conditions during June, July, and August, based on the predictions from the available data set and the assumed model
form. Since time is not included, these results should not be interpreted as a forecast of the likelihood of future dry
conditions.

As mentioned above, we used the method of maximum likelihood for model calibration. However, this approach
provides a global fit to the data, rather than a localized fit to the data on extreme events, which may sometimes lead
to inaccuracies in the tail regions of the SSM. One way to examine the accuracy of the construction in the tail region
is to apply the method to synthetic data generated from a known density, then fit it with a different density, use the
surrogate fitted density to estimate credible intervals, and compare to those of the true density. If accuracy is an issue,
one could calibrate the model to a subset of the available data that better represents the tail regions.

4. CONCLUSIONS

We have formulated risk assessment in climate change impact studies in a framework similar to that used in safety
engineering, by acknowledging that probabilistic risk assessments focused on low-probability, high-consequence cli-
mate events are perhaps more appropriate than studies focused simply on best estimates. To aid in this study, we
have developed specialized statistical surrogate models (SSMs) that can be used to make predictions about the tails
of the associated probability distributions. Without this approach, the use of models developed by the climate science
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community for policy decisions will remain limited. The SSM represents each climate variable output of interest as a
space/time random field, and can be calibrated to available spatial and temporal data from existing climate databases,
or from a collection of outputs from global circulation models. The SSM used herein was a translation random field
which, to the best of our knowledge, has not been used before to model Earth climate, and represents an advancement
in applied uncertainty quantification (UQ) methods. Due to its reduced size and complexity, the realization of a large
number of independent model outputs from an SSM becomes computationally straightforward, so that estimates of
low-probability, high-consequence climate events becomes feasible. A Bayesian framework was also developed to
provide quantitative measures of confidence, via Bayesian credible intervals, in the use of the proposed SSM as a
statistical replacement for the associated GCM.
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APPENDIX A. CALIBRATION OF THE K-L REPRESENTATION FOR A GAUSSIAN RANDOM FIELD

We present a method to calibrate a covariance model of a Gaussian random field based on the singular value de-
composition (SVD) of the data matrix of measurements described in Section 2.2. In practice, the data exist as point
measurements over the spatial domainD; let uj ∈ D, j = 1, . . . , m be the locations of measurements. We assume
samples of the surrogate random field model occur at theuj . If we wish to sample the model at other points inD, we
can use standard spatial interpolation techniques [28].

Thekth measurement at the pointuj is writtengk(uj), which we assume comes from a zero mean random field.
Define them× n data matrixx with entries

xjk = gk(uj). (A.1)

To calibrate an empirical covariance matrix, we compute the SVD of the zero-mean samples

x = y σvT . (A.2)

We then pose the following surrogate model for the Gaussian random fieldG(uj):



G(u1)
...

G(um)


 ≈ 1√

n− 1

n−1∑

i=1

σiyiWi, (A.3)

whereyi are the left singular vectors andσi are the singular values. This is similar to the truncated Karhunen-Loéve
expansion defined by Eq. (4), sinceyi are the eigenvectors of the empirical covariance matrix[1/(n− 1)]xxT , and
σ2

i /(n − 1) are its eigenvalues. Notice that the maximum possible truncation level is set by the number of available
datan. However, we may be able to further truncate the expansion to less thann terms depending on the decay of the
singular values. To generate samples of the calibrated fieldG(uj), we draw samples from the iid GaussianWi and
apply the transformation given byy σ.
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APPENDIX B. A GENERALIZED NORMAL DISTRIBUTION

Let A be a random variable with PDFfA(a|θ1,θ2, θ3) defined by Eq. (13). We can show that the support of the
distribution, denoted byDA, is given by

DA =





(−∞, θ1 + θ2/θ3), θ3 > 0;
(θ1 + θ2/θ3,∞), θ3 < 0;
(−∞,∞), θ3 = 0,

(B.1)

meaning that the PDF defined by Eq. (13) is zero for alla /∈ DA. It follows that the mean, variance, and coefficient of
skewness ofA are

E[A] =
∫

DA

a fA(a) da = θ1 − θ2

θ3

(
eθ2

3/2 − 1
)

,

var[A] =
∫

DA

(a− E[A])2 fA(a) da =
(

θ2

θ3

)2

eθ2
3

(
eθ2

3 − 1
)

,

skew[A] = (var[A])−3/2

∫

DA

(a− E[A])3 fA(a) da =
3eθ2

3 − e3θ2
3 − 2

(
eθ2

3 − 1
)3/2

sign(θ3). (B.2)

Further,A is a Gaussian random variable with zero skewness if, and only if,θ3 = 0; A is a non-Gaussian random
variable with positive (negative) skewness whenθ3 < 0 (θ3 > 0).

Givenn independent samples ofA, denoted byz = (z1, . . . , zn)T , the likelihood that this collection of samples
was drawn from the generalized normal distribution is given by Eq. (3). This is often conveniently expressed as the
negative of the log of the likelihood function, that is,− ln l(z|θ) where, by Eqs. (3) and (13)

− ln l(z|θ) =
n

2
ln 2π +

n∑

k=1

1
2 θ2

3

[
ln

(
1− θ3(zk − θ1)

θ2

)]2

+ ln [θ2 − θ3(zk − θ1)] . (B.3)

It follows that the values forθ that maximize the likelihood function also minimize Eq. (B.3) and are the solution
θ̂ = (θ̂1, θ̂2, θ̂3)T to the following set of equations:

n∑

k=1

θ̂3

θ̂2 − θ̂3(zk − θ̂1)
+

ln ξk

θ̂2 θ̂3 ξk

= 0

n∑

k=1

1
θ̂2 − θ̂3(zk − θ̂1)

+
ln ξk

θ̂2
2 θ̂3 ξk

(zk − θ̂1) = 0

n∑

k=1

θ̂1 − zk

θ̂2 − θ̂3(zk − θ̂1)
− (ln ξk)2

θ̂3
3

− ln ξk

θ̂2 θ̂2
3 ξk

(zk − θ̂1) = 0, (B.4)

whereξk = 1− (θ̂3/θ̂2)(zk − θ̂1).
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