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The objective is to calculate the probability, PF, that a device will fail when its inputs, x, are randomly distributed with
probability density, p (x), e.g., the probability that a device will fracture when subject to varying loads. Here failure
is defined as some scalar function, y (x), exceeding a threshold, T . If evaluating y (x) via physical or numerical ex-
periments is sufficiently expensive or PF is sufficiently small, then Monte Carlo (MC) methods to estimate PF will be
unfeasible due to the large number of function evaluations required for a specified accuracy. Importance sampling (IS),
i.e., preferentially sampling from “important” regions in the input space and appropriately down-weighting to obtain
an unbiased estimate, is one approach to assess PF more efficiently. The inputs are sampled from an importance density,
p′ (x). We present an adaptive importance sampling (AIS) approach which endeavors to adaptively improve the esti-
mate of the ideal importance density, p∗ (x), during the sampling process. Our approach uses a mixture of component
probability densities that each approximate p∗ (x). An iterative process is used to construct the sequence of improving
component probability densities. At each iteration, a Gaussian process (GP) surrogate is used to help identify areas
in the space where failure is likely to occur. The GPs are not used to directly calculate the failure probability; they are
only used to approximate the importance density. Thus, our Gaussian process adaptive importance sampling (GPAIS)
algorithm overcomes limitations involving using a potentially inaccurate surrogate model directly in IS calculations.
This robust GPAIS algorithm performs surprisingly well on a pathological test function.
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1. INTRODUCTION

The objective is to calculate the probability,PF, that a device will fail when its inputs,x, are randomly distributed
with probability density,p (x), e.g. the probability that a device will fracture when subject to varying loads. Failure is
defined as some deterministic scalar function,y (x), exceeding a threshold,T . We assume thaty (x) can be evaluated
by performing physical or numerical experiments. Specifically, this method has been designed to work wheny (x)
is calculated by a black-box simulation code about which we have limited information: we assume the user has noa
priori knowledge about where important regions reside in the input space.

The probability of failure can be thought of as the mean rate of occurrence of failure. The Monte Carlo (MC)
estimate ofPF is therefore the sample mean of the indicator function,I (x),

PMC =
1
N

N∑

i=1

I (xi) x ∼ p (x) , (1)

whereN samples,xi, are drawn fromp (x), and the indicator function,I (x), is 1 if failure occurs and zero otherwise.
For example, if failure occurs wheny (x) > T , then

I (x) =
{

1 if y (x) > T
0 otherwise

.
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Similarly, if failure occurs wheny (x) < T , then

I (x) =
{

1 if y (x) < T
0 otherwise

.

The central limit theorem states that, for sufficiently largeN , the error in a mean of a functiong computed by MC

is normally distributed about zero with standard deviationσerrMC =
√

σ2
g/N. Hereσ2

g is the variance of the function

g. When the probability of failurePF is the quantity of interest andPF is small, this works out to

σerrMC =

√
σ2

I

N
=

√
PF − P 2

F

N
=

√
P 2

F − P 3
F

NPF
≈ PF√

NF

. (2)

HereNF is the number of samples that hit the failure region. Thus, to get two significant figures of accuracy in
the estimate ofPF, MC requires roughlyN = 104/PF samples. The cost of MC is prohibitive if evaluatingy (x)
is sufficiently expensive orPF is sufficiently small. MC’s error converges to zero at a rate ofO (

N−1/2
)
. Latin

hypercube sampling (LHS), in which the dimensions have been paired through random permutation, gives an estimator
for a function mean that has lower variance than MC for any function having finite second moment [1, 2]. Further, the
convergence behavior of LHS improves if the function is additively separable. For many problems, however, the cost
of LHS is still prohibitive.

The outline of the paper is as follows: Section 2 discusses importance sampling and the use of nonparametric
methods in importance sampling, Section 3 presents the Gaussian process adaptive importance sampling algorithm
that we have developed (including motivation, proofs, and implementation details), Section 4 presents the results of
our approach applied to a variety of test problems, and Section 5 provides conclusions.

2. IMPORTANCE SAMPLING

Importance sampling (IS) is a technique to reduce the error variance of Monte Carlo by drawing more samples from
“important” regions and appropriately down-weighting them to obtain an unbiased estimate [3, 4]. Instead of taking
the sample mean of the indicator function as in Eq. (1), where the samples are drawn from the nominal probability
densityp (x), IS draws samples from the importance densityp′ (x) and scales the sample mean by the importance
density:

PIS =
1
N

N∑

i=1

(
I (xi)

p (xi)
p′ (xi)

)
x ∼ p′ (x) . (3)

This reduces the asymptotic error variance fromσ2
errMC

= E
[
(I (x)− PF)2

]
/N to

σ2
errIS =

E
[(

I (x) p(x)
p′(x) − PF

)2
]

N
. (4)

Inspection of Eq. 4 revealsσ2
errIS = 0 if p′ (x) equals the ideal importance densityp∗ (x),

p∗(x) =
I(x)p(x)

PF
= αI(x)p(x), (5)

whereα = 1/PF. However,p∗ (x) is unknowna priori becauseI (x) is only known where it has been evaluated.
Therefore, the requiredPF in the denominator (orα in the numerator) is also unknown;PF is what we are trying to
estimate. This is a serious drawback of the traditional approach to importance sampling.

If importance sampling is to be effective, the practitioner must be able to choose a goodp′ (x) without already
knowingI (x) everywhere. There is a danger though; a poor choice forp′ (x) can put most of the samples in unimpor-
tant regions and makeσ2

errIS much greater thanσ2
errMC

. It can be very challenging to generate an importance sampling
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probability density for a general black-box application for which one cannot exploit any specific knowledge. Richard
and Zhang [5] state, “The construction of importance samplers clearly constitutes the Achilles heel of importance
sampling... importance samplers have to be carefully tailored to the problem under consideration. This has proved to
be a significant obstacle to routine applications of importance sampling.”

A classical approach is to assume thatp′ (x) belongs to a parametric distribution family. Then, the problem is
determining the values of the parameters governing that distribution [for example, determining the mean and variance
for p′ (x) if p′ is assumed to be normal]. Often these parameters are obtained by optimizing the variance of the
importance sampling estimator, but this implies that one can calculate an analytic expression or approximation for
this estimator. Oh and Berger [6] used a mixture distribution (a set of weighted individual distributions), where the
individual distributions were multivariate-t distributions. They then had to determine the weights, location, and scale
parameters of the t-distributions, which they did by numerical minimization of the estimate of the squared variation
coefficient of the weight function.

The use of nonparametric approaches in importance sampling is fairly recent. The first papers were mid-1990s, and
include Bayesian approaches (e.g., Givens and Raftery [7]) and kernel density estimators (Zhang [8]). Zhang outlines
the rationale for going to nonparametric approaches and highlights the trade-offs of the increased convergence but
higher computation of using nonparametric methods: “The most difficult part in parametric importance sampling is
choosing a suitable distribution family to start with. There is no general recipe, and the issue remains largely a matter
of art in the literature. Most parametric distributions fail to include the optimal importance sampling density as a
member” [8].

The literature indicates that mixture importance sampling and adaptive importance sampling (AIS) are promising
approaches for choosing a goodp′ (x). Owen and Zhou [9] state that mixture importance sampling “is asymptotically
not much worse than importance sampling from the best of the mixture components.” Zhang [8] developed one of the
first nonparametric importance sampling approaches based on kernel density estimators (KDE). Swiler and West [10]
expanded this idea and presented an AIS approach meant to be used after an initial set of Latin hypercube samples
has been taken to help refine a failure probability estimate. This approach to estimating the importance densityp∗ (x)
provides “a quick way to generate more samples in the failure region,” but requires that one or more of the initial
LHS samples hit each failure region. Thus, KDE-based AIS can perform poorly whenPF and the number of allowed
samples is small and/or there are multiple disjoint failure regions. We will refer to this as Limitation 1 when we
address it below.

Swiler and West [10] also explored fitting Gaussian process (GP) surrogates and calculating the probability that
the surrogate exceeded the threshold. They effectively used the GP’s expectation ofy (x), i.e., its adjusted mean,
to make a binary approximation ofI (x). They discovered that such an approximation of the indicator function can
perform poorly when the surrogate is inaccurate for some parts of the domain. We will refer to this as Limitation 2
below.

3. GAUSSIAN PROCESS ADAPTIVE IMPORTANCE SAMPLING

We propose a Gaussian process adaptive importance sampling (GPAIS) algorithm that combines ideas from mixture
importance sampling with a nonparametric approach to AIS. Note that in the technical sense, it uses an ensemble
rather than a “mixture” of distributions. Our approach is adaptive in the sense that the distributions in the ensemble
are a sequence of improving GP approximations of the ideal importance density. Our algorithm also use a novel
estimator with advantages over traditional estimator.

3.1 GPAIS Estimator

Let Ex = {p′i (x) ∀i = 1, 2, ..., N} be a set or “ensemble” ofN probability distributions defined over the domain of
x. Further, let one point be drawn randomly from eachp′i (x). However, theN component distributions, thep′i (x)s,
are not required to be unique; i.e., there can be multiple copies of the “same distribution” in the ensemble which thus
permits more than one sample to be drawn from a particular distribution. Then theensemble distribution,
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pEx (x) =
1
N

N∑

i=1

p′i (x) , (6)

is the single distribution from which an arbitrary set of pointsxi would be selected with the same probability as if
they were drawn from the ensemble in the manner described above.

GPAIS estimates the probability of failure using:

• theN samples drawn from the ensemble, and

• the ensemble distribution as the sole importance distribution,p′ (x) = pEx (x), i.e.,

PGPAIS =
1
N

N∑

i=1

(
I (xi)

p (xi)
pEx (xi)

)
x ∼ Ex. (7)

This GPAIS estimator should be compared to the following “traditional” importance sampling estimator for an en-
semble ofN importance distributions:

PTrad =
1
N

N∑

i=1

(
I (xi)

p (xi)
p′i (xi)

)
xi ∼ p′i (x) . (8)

If the xi ∼ p′i(x) for i = 1, ..., N are independent, then the GPAIS estimator, Eq. (7), is unbiased with a variance
that is less than or equal to the traditional estimator, Eq. (8). This is most easily seen in the discrete case where there
is a large but finite number,M , values ofx. Taking the limit asM goes to infinity and as the probability mass of each
x goes to zero will show that Eq. (7) is also unbiased and has smaller variance than Eq. (8) in the continuous case. We
give proofs of these statements.

3.1.1 Proof that the GPAIS Estimator is Unbiased

LetR be the set of all rare event states such that

∑

x∈R
p (x) =

∑

x∈X
I (x) p (x) = P ¿ 1 and I (x) =

{
1 ∀x ∈ R
0 ∀x /∈ R .

Then

E [PGPAIS] = E{xi∼p′i}

[
1
N

N∑

i=1

I (xi) p (xi)
pEx (xi)

]
=

1
N

N∑

i=1

(
E{xi∼p′i}

[
I (xi) p (xi)

pEx (xi)

])

=
1
N

N∑

i=1

(
M∑

k=1

p′i (xk)
I (xk) p (xk)

pEx (xk)

)
=

1
N

N∑

i=1

( ∑

xk∈R
p′i (xk)

p (xk)
pEx (xk)

)

=
∑

xk∈R

p (xk)
pEx (xk)

(
1
N

N∑

i=1

p′i (xk)

)
=

∑

xk∈R

p (xk)
pEx (xk)

(
pEx (xk)

)

=
∑

xk∈R
p (xk) = P. (9)

Thus, assuming thexis are independent, the GPAIS estimator is unbiased.
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3.1.2 Proof that the GPAIS Estimator Reduces Variance

Lemma: If the xis are independent, then

E

[
N∑

i=1

(
I (xi) p (xi)
N pEx (xi)

)2
]
≤ E

[
N∑

i=1

(
I (xi) p (xi)
N p′i (xi)

)2
]

. (10)

Proof: The harmonic mean inequality states that a harmonic mean is less than or equal to the arithmetic mean. This
implies that for allxk

1
1
N

∑N
i=1

1
p′(xk)

≤ 1
N

N∑

i=1

p′i (xk) ,

and hence that
1

pEx (xk)
≤ 1

N

N∑

i=1

1
p′i (xk)

. (11)

The equality holds only when allp′i (x) are the same. It then follows that

E

[
N∑

i=1

(
I (xi) p (xi)
N pEx (xi)

)2
]

=
N∑

i=1

E

[(
I (xi) p (xi)
N pEx (xi)

)2
]

=
N∑

i=1

{
M∑

k=1

p′i (xk)
(

I (xk) p (xk)
N pEx (xk)

)2
}

=
M∑

k=1

(
I (xk) p (xk)
N pEx (xk)

)2 N∑

i=1

p′i (xk)

=
M∑

k=1

(
I (xk) p (xk)
N pEx (xk)

)2

N pEx (xk)

=
M∑

k=1

(I (xk) p (xk))2

N

(
1

pEx (xk)

)

≤
M∑

k=1

(I (xk) p (xk))2

N

(
1
N

N∑

i=1

1
p′i (xk)

)
[by Eq. (11)]

=
N∑

i=1

{
M∑

k=1

p′i (xk)
(

I (xk) p (xk)
N p′i (xk)

)2
}

=
N∑

i=1

E

[(
I (xi) p (xi)
N p′i (xi)

)2
]

= E

[
N∑

i=1

(
I (xi) p (xi)
N p′i (xi)

)2
]

.

Theorem: If the xis are independent, then

Var [PGPAIS] ≤ Var [PTrad] (12)

Proof: Define

µi ≡ E
[

1
N

I (xi) p (xi)
pEx (xi)

]
.
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Then Eq. (9) shows that
N∑

i=1

µi = P,

which (because variance cannot be negative) implies that

N∑

i=1

µ2
i ≥

P 2

N
. (13)

Then

Var [PGPAIS] = Var

[
N∑

i=1

I (xi) p (xi)
N pEx (xi)

]

=
N∑

i=1

Var
[
I (xi) p (xi)
N pEx (xi)

]

=
N∑

i=1

E

[(
I (xi) p (xi)
N pEx (xi)

)2

− µ2
i

]

= E

[
N∑

i=1

(
I (xi) p (xi)
N pEx (xi)

)2
]
−

N∑

i=1

µ2
i

≤ E

[
N∑

i=1

(
I (xi) p (xi)
N p′i (xi)

)2
]
− P 2

N
[ From Eq. (10)and Eq. (13)]

=
N∑

i=1

E

[(
I (xi) p (xi)
N p′i (xi)

− P

N

)2
]

=
N∑

i=1

Var
[
I (xi) p (xi)
N p′i (xi)

]

= Var

[
1
N

N∑

i=1

I (xi) p (xi)
p′i (xi)

]

= Var [PTrad] .

3.2 GPAIS Algorithm

We have shown that the GPAIS importance density will yield an unbiased estimator for a failure probability, and
an estimate which has lower variance than a traditional importance sampling approach. This section provides details
about the algorithm implementation, specifically how to generate the component densities in the ensemble. In practice,
the first component importance density to approximatep∗ (x) will be based on a GP emulator that is built from an set
of multiple points drawn from an initial (zeroth) component distribution. We use GP models in this work because they
have been shown to be effective emulators or surrogates for black-box functions [11] and they have the capability to
estimate the error in their prediction.

The following summary of our GPAIS algorithm will hopefully provide the reader with context when we subse-
quently describe the components in greater detail.

• We generate an initial set of samples that is “optimal” for both constructing the initial GP and estimating the
failure probability. In the absence of prior information about the unknown true function,
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– the nominal distribution is the optimal initial distribution for estimating the probability of failure, and

– it is optimal to build GPs on a bounded domain from uniformly spaced data points.

We therefore map the simulator’sD input variables,x, through their cumulative distribution functions (CDFs),
to “χ space” where the domain of the GP is the[0, 1]D unit hypercube. If the input variables are indepen-
dent, then the mapped toχ spaceD-dimensional nominal distribution will be uniform and the one-dimensional
marginals of the nominal distributions are guaranteed to be uniform regardless of their dependence/independence.
We build the first (and all subsequent) GPs inχ space using an initial set of data points that are generated by
LHS in χ space.

• The GP’s spatially varying, real valued, expectation of the indicator function, hereafter referred to as theex-
pected indicator function, is the portion of its Gaussian distribution in the “vertical” direction that is on the
failing side of the failure threshold. The expected indicator function is used in place of the unknown true indi-
cator function to approximate the unknown ideal importance density.

• Sampling the GP a large number of times is used to estimate the normalization constant of the approximated
ideal importance density. This large number of emulator evaluations is reused to draw one or more importance
samples from the approximated ideal importance density.

• The simulator is evaluated at the new importance samples which are added to the existing set of data points and
used to rebuild the GP. This rebuilding of the GP as new data points are added adaptively updates/refines our
approximation of the unknown true ideal importance density.

• At the end of the importance sampling, the GPAIS estimator is used to calculate the probability of failure.

Note that the preceding was a simplified explanation, and the actual implementation is far more detailed. For
example, to take advantage of available computing resources, one might wish to concurrently evaluate the simulator
at batches of points drawn from each of the component distributions. We now redefine the ensemble and ensemble
distribution to facilitate the presentation of the GPAIS algorithm in these contexts.

Let Ex = {p′j (x) ∀j = 0, 1, 2, ..., J} be a set or “ensemble” ofJ + 1 different distributions defined over the
domain ofx from which a total ofN points are to be drawn so thatnj points are drawn from distributionp′j (x) and

N =
∑J

j=0 nj . Also letxi for i = 1, 2, 3, ..., N be an arbitrary set ofN points that are drawn from this ensemble of
distributions. Then theensemble distributionis

pEx (x) =
1
N

J∑

j=0

njp
′
j (x) . (14)

The definition of the GPAIS estimator in Eq. (7) is unchanged.
The adaptive part of our GPAIS algorithm is that the full ensemble of distributions,Ex, is not knowna priori,

instead thejth component distribution,p′j (x) j > 0, is an estimate of the ideal importance distributionp∗ (x) found
by fitting a GP to the subset of points already drawn from the0, ..., j − 1 component distributions. The GP’s adjusted
mean,E [y(x)], is its “best guess” for the functiony(x) whose true value is only known where it has been sampled.

Note that there may be ambiguity about the word “adaptive” in adaptive importance sampling. Zhang [8] refers
to AIS as a technique for simultaneously estimating the parameters governing the importance sampling distribution
and estimating the quantity of interest (the expectation) as compared to performing the computations in a staged
approach. Another interpretation of AIS is that the importance sampling probability density changes or is updated
iteratively during the course of estimating the expectation. We use the latter meaning.

Note that although the drawing of the differentxi from their respectivep′i (x) is independent, the component
distributionslater in the sequence do depend on the earlier draws. Strictly speaking, this violates the assumption of
independentxi used to prove unbiasedness and reduced variance relative to the traditional estimator. Despite this, the
GPAIS algorithm performed admirably on test problems.
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If any of the one-dimensional marginal distributions of theD-dimensional nominal distribution,p(x), is not the
uniform distribution, then the originalx should be mapped toχ through their one-dimensional cumulative distribution
functions,χd = CDFd (xd) d = 1, 2, ..., D. The GP is then constructed to approximatey(χ) rather thany(x). Here
and in what follows, we usep to denote distributions defined overx andρ to denote distributions defined overχ. We
also abuse notation so thaty(χ) andI(χ) denote mappingχ to x and then, respectively, evaluating the true function
and indicator function at the correspondingx. Similarly E[y(χ)] andVar[y(χ)], denote evaluating the emulator’s
adjusted mean and variance in terms ofχ; however, since the emulator is natively defined inχ space, evaluating
E[y(χ)] andVar[y(χ)] does not involve mappingχ to x. This has several advantages.

GPs tend to be best conditioned and most accurate when they are built from uniformly spaced points on a bounded
domain and the GP only needs to extrapolate a very short distance beyond the build points. Even if the marginals
of p(x) have infinite support (e.g. Gaussian distributions),ρ (χ) is defined over the bounded domain[0, 1]D. If the
D dimensions are independent, then the nominal probability density inχ space isρ(χ) =

∏D
d=1 u(0, 1) = 1. If

the dimensions are not independent, then a copula will be needed to express that dependence. This is still somewhat
convenient because copulas are defined in terms ofχ (the marginal CDFs). However, handling dependent dimensions
using a copula is beyond the scope of the current work. For the remainder of this paper we will assume that the
dimensions are independent and therefore thatρ (χ) = 1.

Samplingχ from ρ (χ) is equivalent to samplingx from p (x). Becauseρ (χ) is the D-dimensional uniform
distribution we can select an initial set of samples that is “optimal” for both constructing the GP and estimating the
failure probability. It also greatly simplifies our algorithm. Expressed in terms ofχ rather thanx, PGPAIS is

PGPAIS =
1
N

N∑

i=1

(
I (χi)

1
ρEχ (χi)

)
χ ∼ Eχ, (15)

where
Eχ = {ρ′j (χ) ∀j = 0, 1, 2, ..., J} (16)

and

ρEχ (χ) =
1
N

J∑

j=0

njρ
′
j (χ) . (17)

The “Gaussian” in “Gaussian process” refers to the GP’s estimated normal distribution of possible true surfaces
about the adjusted mean. The portion of the Gaussian cumulative distribution function that exceeds the threshold,T ,
is the GP’s expected indicator function,E [I(χ)]. If failure occurs wheny(χ) > T , then we define

E [I(χ)] =
1
2

(
1 + erf

(
(E [y(χ)]− T )√

2Var [y(χ)]

))
. (18)

Alternatively, if failure occurs wheny(χ) < T , then

E [I(χ)] =
1
2

(
1 + erf

(
(T − E [y(χ)])√

2Var [y(χ)]

))
. (19)

The expected indicator function is illustrated in Fig. 1, where it is shown as the solid red line at the bottom of the
subplots. The explanation is given in the caption.

Note that the GPs are not used todirectly calculate the probability of failure; the true indicator function is used
for that purpose as indicated in Eq. (15). The GP is only used to approximateρ∗, i.e., KDE’s role in the approach of
Swiler and West [10]. This avoids Limitation 1 and shifts Limitation 2 to the determination ofρ′j(χ).

We use the expected indicator function to determine the component densities used in GPAIS. Thejth GP’s esti-
mate,j > 0, of the ideal importance density is then

ρ′j (χ) = αjEj [I (χ)] ρ (χ) = αjEj [I (χ)] , (20)
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FIG. 1: Illustration of the expected indicator function,E [I (χ)], which is shown as the solid red line at the bottom
of the subplots. The dashed black line is the unknown true indicator function. The left subplot uses a deliberately
bad trend function (i.e., no trend function) to illustrate the behavior of the GP’s expected indicator function under
large uncertainty. The right subplot uses an appropriate trend function to illustrate that the expected indicator function
closely follows the unknown true indicator function. The GP was built from the 5 data points represented by the cyan
circles. The unknown true function is plotted as the dashed cyan line. The GP’s adjusted mean is plotted as the solid
blue line. The GP’s Gaussian distribution in the “vertical direction” is represented by the intensity of the red/black
shaded region where the red portion signifies failure and the black portion signifies nonfailure. In both regions, the
intensity of the shading signifies how much of the distribution is further from the adjusted mean than the current
point. In the left subplot, the slight dip in the expected indicator function at aboutχ = 0.55 is due to the estimated
uncertainty about the unknown true function’s value locally increasing faster than the distance of the adjusted mean
above the failure threshold. In this figure, failure occurs above the threshold which is plotted as the dash-dotted
magenta line.

and its normalization constantαj is given by

αj =
1∫

Ej [I (χ)] ρ (χ) dχ
=

1∫
Ej [I (χ)] dχ

=
1
P̂j

. (21)

Note thatE [I (χ)] is real valued instead of binary. If one adds a nugget to handle ill-conditioning in the GP
construction, the slight loss in accuracy of the expected indicator is inconsequential rather than critical. One could
also add a nugget to account for either the threshold,T , or y(χ) being stochastic rather than deterministic.

GPAIS avoids or otherwise overcomes many of the traditional limitations of importance sampling approaches.
However, it has two new challenges. The first is how to determineαj ; it is challenging because the integral in the
denominator of Eq. (21) cannot be performed analytically. The second is how to draw from component importance
densitiesρ′j(x) that are only implicitly defined. We found a joint solution to both problems, namely to evaluate the
jth GP emulator at a large number,K, of pointsξk k = 1, 2, ..., K whereξ ∼ ρ(ξ). From this ensemble of emulator
evaluations we estimateαj and drawnj importance samples. The true functiony (x) is then evaluated at thesenj

points which are added to the set of points used to construct GPj+1.
Note thatαj being approximate rather than exact does not mean that the samples are drawn from the wrong

distribution since the distribution implicitly defined by the GP is the distribution that we are drawing from. Rather,
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approximateαjs only mean that the ensemble distribution,ρEχ(χ) used in Eq. (15) is approximate. And fortunately,
the error inρEχ(χ) is fairly easy to control.

We accomplish the estimation ofαj by evaluating a quantityfk = Ej [I (ξk)] ρ (ξk) = Ej [I (ξk)] for eachξk

whereξ ∼ ∏D
d=1 u(0, 1). Equation (2) shows that the Monte Carlo (MC) standard deviation of error for probability

of failure is roughlyPF/
√

NF, so if we continue evaluating the emulator untilSj =
∑K

k=1 fk ≥ 25, then the standard
deviation of integration error in̂Pj ≈ Sj/K should be at most about̂Pj/5. At first glance an error of20% in P̂j might
seem unacceptable, but if 25 component GP approximations ofρ∗ (χ) are employed, then the overall integration
error inρEχ (χ) should be about4%, which is often acceptable. Likewise, using 100 component GP approximations
should result in2% or less integration error and havingnj = 1 for j > 0 minimizes the integration error. However, if
evaluatingy (ξ) is sufficiently “expensive,” then it will be preferable to use a largerSj ; e.g., if we continue sampling
the emulator untilSj =

∑K
k=1 fk ≥ 400 then the integration error in̂Pj will be aboutP̂j/20.

We then select thekth evaluation,ξk, of the jth GP to be theith importance sample,χi, with probability
P (χi = ξk) = fk/Sj . This can be done by normalizing the cumulative sum of thefk terms to 1 and randomly
drawing one real number from the uniform distribution over[0, 1]. That draw selects one of thefk terms and its as-
sociatedξk. If Sj = 0 after a very largeK, one can simply drawχi from ρ(χ), which is equivalent to all of the
emulator evaluations having equal probability of being selected and thus is equivalent to drawingx from the nominal
distributionp (x). If theSj is very small but nonzero when the upper limit onK is reached, then selecting the point via
the cumulative sum will still generate “good” (i.e., more likely to fail) samples, but the previously stated probabilistic
bound on the overall integration error may not apply.

Drawing batches ofnj > 1 importance samples is more complicated, but is not conceptually more difficult than
selecting a single importance sample. One just needs to ensure that individualξks are not selected more than once
without altering the probability of any bin being selected. This can be accomplished by

• using a one-dimensional (1D) LHS to select multiple samples from the cumulative sum offks,

• reordering thefks so that smallest values are located closest to the LHS bin edges,

• requiring a significantly largerSk, and

• when an individualfk is selected more than once, discarding and redrawing the whole 1D LHS.

If Sk is small but nonzero when the upper limit onK is reached, then a portion, perhaps all but one sample, could
be drawn fromρ(χ). Drawing batches of points also means there are fewer component importance densities in the
mixture approximation. For these reasons, batch GPAIS can perform noticeably worse than when points are drawn
one at a time.

Our GPAIS algorithm actually builds two GPs at each step; the hyper-parameters for both are selected by using
global optimization to maximize the likelihood. The first candidate uses the exponential correlation function,

r (χ1, χ2) = exp

(
−

D∑

d=1

θd |χ1,d − χ2,d|
)

, (22)

which producesC0 continuous GPs. The exponential correlation function is useful for capturing pathological prob-
lems with discontinuities because it allows for greater localization of uncertainties. The second candidate uses the
squared exponential (also known as “Gaussian”) correlation function,

r (χ1, χ2) = exp

(
−

D∑

d=1

θd (χ1,d − χ2,d)
2

)
, (23)

which producesC∞ continuous GPs. The squared exponential correlation function is useful for smooth problems
where it has smaller uncertainty at interpolated points.
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Our algorithm calculateŝPj for both GPs using the same104 samples ofξk, selects the GP with the smaller̂Pj

and, if necessary (i.e., ifSj is smaller than desired), generates additionalξk for the selected GP to refine its estimate
of P̂j . This heuristic method of GP selection is based on the assumption that the true failure probability is “small” and
P̂j for the selected GP is smaller because it has less uncertainty about, and therefore is more representative of, the
unknown true function. This assumption deserves a bit of explanation.

Relative to other smart sampling techniques such as space-filling LHS [12–14], importance sampling is only
beneficial if the probability of failure is very small (or very close to 1, in which case it can accurately estimate the
very small probability of not-failing and that can be subtracted from 1). Thus, the assumption that the probability of
failure is “small” is likely valid given that importance sampling is being applied. Suppose that

• there are two GP emulators designated as “A” and “B,”

• these two emulators predict identical adjusted means which are fairly close to the true function,

• emulator A is correctly confident (has small adjusted variance) about where the true function is far from the
failure threshold, although it is not confident about if or where it does fail, and

• emulator B is unconfident (has large variance) about where it correctly predicts the true function.

Then

• GP A will estimate a small̂P and accurately approximateρ∗(χ), meaning it correctly favors regions of the
domain where the failure occurs or is close to occurring; and

• GP B will estimate a much larger̂P and poorly approximateρ∗(χ), meaning it will be closer toρ(χ) (i.e., cause
GPAIS to be closer to conventional MC) than GP A.

Moreover, GPs with small variance tend to have adjusted means closer to truth than those with large variance.
Note that the exponential and squared exponential correlation functions are the respective lower and upper bound

assumptions on the true function’s degree of smoothness. Taken in combination, they provide good coverage for
functions with intermediate degrees of smoothness.

To summarize, GPAIS has the following steps:

• Take an initial set of LHS samples fromρ′0(χ) =
∏D

d=1 u(0, 1)

• For j = 1, 2, ..., J

1. Build two candidates (overχ) for GPj

2. Evaluate both candidate GPs at104 random samples and estimateP̂j from Eq. (21)

3. Select the GP with the smaller̂Pj as GPj

4. If necessary (i.e., ifSj is smaller than desired), evaluate GPj at additional random samples to refine the
estimate ofP̂j

5. Generatenj (typically 1) draws ofχ from ρ′j (χ) and evaluate the true functiony (χ) at these draws

6. Add the new sample points to the set of build points for GPj+1

• Use Eq. (15) to calculate the failure probability, where the importance density is calculated by Eq. (17).
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4. RESULTS

We present the results of the GPAIS algorithm on four test problems with a range of attributes. Thresholds were chosen
to produce desired failure probabilities and are listed in Table 1.

The Herbie test function [15] is

yherbie (x) = −
D∏

d=1

(
exp

(
− (xd − 1)2

)
+ exp

(
−0.8 (xd + 1)2

)
− 0.05 sin (8 (xd + 0.1))

)
. (24)

WhenPF ≈ 1.5×10−2, the 2D Herbie function has five disjoint failure regions in the[−2, 2]2 square. Row 1 of Table
1 and the left subplot of Fig. 2 show the results for this case. With 50 training points and 150 points adaptively chosen
one at a time, GPAIS estimatedPF to be1.460 × 10−2; discovered all five failure regions, and placed a significant
number of points in the neighborhood ofx1 = x2 = 1 which is close to failing (see the left subplot of Fig. 2).

For the Herbie function, when estimating the probability of failure for the first threshold (row 1 of Table 1), GPAIS
chose the the exponential correlation function for the first 34 adaptively chosen points and the squared exponential
for the remaining 116. WhenPF ≈ 10−4, there is one failure region in the[−2, 2]2 square. The results for this case
are shown in row 2 of Table 1 and the right subplot of Fig. 2. GPAIS put 128 of the 150 adaptively chosen points in
the failure region and a significant number in three other regions that are close to failing. Note that in this case, the
squared exponential function was always chosen.

For the ten-dimensional circular parabola test function,

ycircparab (x) =
D∑

d=1

(2xd − 1)2, (25)

the GPAIS algorithm performs much better when allowed to choose between the exponential and squared exponential
correlation function vs. being forced to use the exponential correlation function in the GP, both in terms of number
of hits and accuracy of failure estimate (see rows 3 and 4 of Table 1). The results indicate that only 82 of the 300
adaptively chosen points using the exponential correlation function hit the failure region. However, when the algorithm
was allowed to choose, it selected the exponential correlation function for the first adaptively chosen point and the
squared exponential for the remaining 299. In this case, 282 of these points hit the failure region. This improvement
is because this is a smooth function and well approximated with the squared exponential.

We have developed a particularly challenging, arbitrary dimensional test problem defined over the unit hypercube.
We call it the “planar cross” function due to the shape of its failure region, which is shown in the left subplot of Fig. 3
for T = 0.02 and 3 dimensions.

TABLE 1: The “Exp GPs” and “Exp2 GPs” columns contain the number of times the GP using the exponential and
squared exponential correlation function, respectively, was selected. A “—” entry means GPAIS was forced to use
the other correlation function for all adaptively chosen samples. A zero means GPAIS chose not to use the correlation
function. The thresholdT is approximate for the circular parabola and circular square root of diameter problems and
exact for Herbie and planar cross. The truePF is exact for the circular parabola and circular square root of diameter
problems and approximate for Herbie and planar cross
Row Training Adaptive Exp Exp2 No. of
ID

Test problem T P (y < T ) PGPAIS samples Samples GPs GPs hits
1 2D Herbie –1.065 1.5× 10−2 1.460× 10−2 50 150 34 116 120
2 2D Herbie –1.12565 10−4 1.079× 10−4 50 150 0 150 128
3 10D Circ. Parab. 0.5257 10−4 1.004× 10−4 100 300 1 299 282
4 10D Circ. Parab. 0.5257 10−4 9.50× 10−5 100 300 300 — 83
5 6D Planar Cross 0.003262 10−4 8.82× 10−5 100 650 650 0 7
6 6D Planar Cross 0.003262 10−4 5.63× 10−5 100 1500 — 1500 2
7 10D Circ. Diam. Root 0.8515 10−4 9.36× 10−5 100 300 82 218 189
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FIG. 2: For the 2D Herbie test function (left) with failure probability,PF ≈ 1.5%, the GPAIS estimate ofPF is
1.460%; (right) with a failure probability,PF ≈ 10−4, the GPAIS estimate ofPF is 1.079 × 10−4. The red area
indicates the failure region. Importance samples are plotted as white x’s.

FIG. 3: Left: Isosurface of the failure region of the 3D planar cross function forT = 0.02. Right: The planer cross
function for 2 inputs.

yplanarcross (x) =

(
D∏

d=1

(
1
2

(1 + cos (2πxd))
))1/D

(26)

The 2D planar cross function is shown in the right subplot of Fig. 3. ForD = 1, the planar cross function isC∞

continuous. ForD = 2, the planar cross function has a finite magnitude discontinuity in its first derivative atxd = 0.5
for any d. For D ≥ 3, the first derivative discontinuity has infinite magnitude; this is what makes the planar cross
function a pathologically challenging problem.
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This test problem deserves a few comments. When GPAIS was allowed to use the exponential correlation function
(row 5 of Table 1), the final̂Pj was3.28 × 10−3. This differs from the truePF by roughly 3128%. From this it is
apparent that the final GP was not a very good representation of reality. But, because the GP was only used to approx-
imate the ideal importance density and the true indicator function was used to estimatePF, the GPAIS estimate of
8.82× 10−5 differs from truth by less than 12%. Also, GPAIS correctly determined that theC0 continuous exponen-
tial correlation function was a much better choice than theC∞ continuous squared exponential correlation function
(row 6 of Table 1). For the sake of comparison, when GPAIS was required to use the squared exponential correlation
function, with 100 training points, about 1100 adaptively chosen samples were required to hit the failure region. This
is still substantially better than MC.

We present a test problem which highlights the usefulness of choosing the correlation function. We call this test
function the circular square root of diameter function,

ycircdiamroot (x) =
D∑

d=1

((2xd − 1)2)0.5/R, (27)

where we usedD = 10 andR = 2. The function in two dimensional is shown in the right subplot of Fig. 4. This
function is more difficult for emulators to predict than some functions like the circular parabola function (left subplot
of Fig. 4) because it is less smooth.

The GPAIS algorithm performed better on the circular square root of diameter problem when it was allowed
to choose between the exponential and squared exponential correlation functions vs. being forced to use only one
correlation function for the GP. Row 7 of Table 1 and the left subplot of Fig. 5 show the GPAIS algorithm’s choice of
correlation function for this problem. Thex axis displays the total number (training plus adaptive) samples. The blue
line indicates the number of times the exponential correlation function is chosen. The green line shows the number of
times the squared exponential correlation function is chosen. The cyan line is the total number of adaptive samples.
The red line is the number of points chosen adaptively that hit the failure region. The left subplot of Fig. 5 shows that
the GPAIS algorithm tended to prefer the exponential correlation function in the first 50 adaptive points. After that it
tended to prefer the squared exponential correlation function. By the 150th adaptive point (the 250th simulation sample

FIG. 4: Left: The circular parabola test function in two-dimensional. Right: The circular square root of diameter test
function in two-dimensional.
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FIG. 5: GPAIS time history for the circular square root of diameter test problem. Top: Choice of correlation function.
Bottom: Convergence of probability of failure estimate.

counting the 100 initial samples), the lines cross and the squared exponential becomes the predominant correlation
function.

Our GPAIS algorithm is successful at adaptively selecting both the points and correlation function. Although none
of the original 100 LHS samples fell in the failure region, GPAIS hit the failure region with 189 points identified as
part of the construction of the importance density. That GPAIS produces many samples that “hit” the failure region
is an independently useful benefit that should not be overlooked. One can take the samples that hit the failure region
and analyze them for particular characteristics (e.g. do the failure region points tend to fall in certain parts of the
input parameter space, is there correlation between the input parameters for points in the failure region, etc.). Thus, in
addition to providing estimates of failure probability, GPAIS provides a mechanism for quickly generating points in
the failure region for problems where MC sampling would take excessively long to generate a comparable number of
points.
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The right subplot of Fig. 5 shows how the GPAIS estimate converges for the circular square root of diameter prob-
lem. The red line shows the GPAIS estimate for failure probability. The cyan line shows the individualP̂j estimates
for each iteration, which is the reciprocal of the normalizing constant given in Eq. (21). The black line is the true
probability of failure. The GPAIS failure estimate converges to the true estimate around adaptive sample 150, or by
the time 250 samples in total have been evaluated.

We plot relative error based on all of these test problems (e.g., all seven rows of Table 1) as a function of number
of hits, NF, in Fig. 6. In the limit of an infinite number of samples, GPAIS should acquire perfect knowledge of
the black-box function’s response over the input domain, and all further samples would then hit the failure region.
Thus plotting the relative error vs. the number of hits instead of the number of samples is a crude way of estimating
asymptotic convergence properties for AIS methods from early time data. Note that this is simply an empirical study
with no proof of convergence of the behavior of GPAIS. However, the slope of the line is around –0.74 in log scale,
which is significantly better than the MC convergence rate of –0.5 as indicated in Section 1. Also note that this does
not take into account the improved rate at which samples hit the failure region. For the pathological planar cross
problem, row 5 of Table 1, which was the test problem for which our GPAIS algorithm performed the worst, GPAIS
hit the failure region about 93 times more often than MC and this rate was accelerating.

5. CONCLUSIONS

We present a gaussian process adaptive importance sampling (GPAIS) algorithm that assumes the system is a black-
box simulator and the user has noa priori knowledge about the location of important regions within the input space.
It achieves the same accuracy as Monte Carlo or Latin hypercube sampling with orders of magnitude fewer function
evaluations. It works well for small failure probabilities, small numbers of samples, disjoint failure regions, and a
wide array of test problems. It performs surprisingly well on a pathological, six-dimensional,C0 continuous test
problem with infinite magnitude discontinuity in the first derivative and a small failure probability. The robustness
of our GPAIS algorithm elevates importance sampling from an art form limited to experts to a practical tool that is
beneficial to simulation users who wish to compute failure probabilities with their codes.

FIG. 6: Relative error estimates for the seven test function examples used in this paper.
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