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We study some theoretical aspects of Legendre polynomial chaos based finite element approximations of elliptic and
parabolic linear stochastic partial differential equations (SPDEs) and provide a priori error estimates in tensor product
Sobolev spaces that hold under appropriate regularity assumptions. Our analysis takes place in the setting of finite-
dimensional noise, where the SPDE coefficients depend on a finite number of second-order random variables. We first
derive a priori error estimates for finite element approximations of a class of linear elliptic SPDEs. Subsequently, we con-
sider finite element approximations of parabolic SPDEs coupled with a θ-weighted temporal discretization scheme. We
establish conditions under which the time-stepping scheme is stable and derive a priori rates of convergence as a func-
tion of spatial, temporal, and stochastic discretization parameters. We later consider steady-state and time-dependent
stochastic diffusion equations and illustrate how the general results provided here can be applied to specific SPDE
models. Finally, we theoretically analyze primal and adjoint-based recovery of stochastic linear output functionals that
depend on the solution of elliptic SPDEs and show that these schemes are superconvergent.

KEY WORDS: stochastic partial differential equations, a priori error estimation, chaos expansions, finite
element methods, time-stepping stability, functional approximation

1. INTRODUCTION

Since the publication of the monograph on spectral stochastic finite element (FE) methods by Ghanem and Spanos [1],
a number of researchers have developed and applied numerical schemes based on this idea with great success to a broad
range of stochastic partial differential equations (SPDEs); see, for example [2–6]. Due to the increasing popularity of
stochastic FE methods, there has been a growing interest in theoretical analysis of this class of numerical schemes
in order to derive a priori rates of convergence and error estimates. Such results can provide valuable insights into
stochastic FE methods and are also of practical importance for computational implementations.

Stochastic diffusion models have been extensively studied from a theoretical and numerical point of view in the
literature since it is a representative SPDE model widely used to study the performance of numerical methods for
SPDEs; see, for example [7–15]. Some convergence rates in tensor product Sobolev spaces for the FE approximations
of such models are provided in [7–9, 11, 15] when considering steady-state stochastic diffusion models and in [13]
when considering time-dependent stochastic diffusion models. The convergence rate of bestN -term approximations
has been studied by Cohen et al. [11] under appropriate assumptions on the Karhunen-Loève (KL) expansion of the
random field. When the SPDE solution satisfies appropriate analyticity conditions in the complex plane, exponen-
tial convergence rates have been proved for the same kind of models by Nobile, Tempone, and co-workers [9, 13].
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NOMENCLATURE

D bounded convex physical domain,
D ⊂ Rd

∂D polygonal boundary of the physical
domain

x spatial coordinates
T integration time,T < +∞
t temporal coordinate,t ∈ [0, T ]
Ω sample space,Ω ⊂ Rq

ω elementary event,ω ∈ Ω
ξ vector ofM independent uniform

random variables,ξ : Ω → RM

Γ joint image ofξ, Γ ⊂ RM

ρ(ξ) probability density function
〈·〉 expectation operator with respect toρ

V Hilbert space of spatial functions
S Hilbert space of random functions
W tensor product space,W = V ⊗ S
u solution of SPDE model,u ∈ W (elliptic

case),u ∈ L2(0, T ;W) (parabolic case)
u0 initial value function (parabolic case)
A bilinear form in weak formulations
αc continuity constant ofA
αe ellipticity constant ofA, αe > 0
Th nondegenerate or quasi-uniform

triangulation ofD
h mesh-size,h ∈ [0, 1[

Vh finite-dimensional subspace,Vh ⊂ V
n number of spatial degrees of freedom
PC polynomial chaos
Spξ M -dimensional PC space,Spξ ⊂ S
pξ PC degree
Nξ cardinality ofSpξ

uh,pξ
approximate solution inVh ⊗ Spξ

(elliptic case)
θ parameter of the weighted temporal

discretization scheme,θ ∈ [0, 1]
∆t time-step
tm instant timetm = m∆t
um

h,pξ
approximate solution inVh ⊗ Spξ at
time tm (parabolic case)

J(u) linear functional depending on the
solutionu of the primal problem,
u ∈ V ⊗ S

J(uh,pξ
) approximate linear functional

w solution of the dual problem,w ∈ V ⊗ S̃
H (coarse) mesh-size for the spatial

discretization of the dual problem
qξ (low) PC order for the stochastic

discretization of the dual problem
wH,qξ

approximate dual solution inVH ⊗ Sqξ

Jimp(uh,pξ
, wH,qξ

) approximate improved linear functional
CD Poincaŕe’s constant

Convergence rates with respect to Sobolev norms have also been studied by Todor and Schwab [15] when considering
sparse Wiener-chaos approximations.

Recently, Bespalov et al. [16] provided a detailed a priori error analysis for stochastic Galerkin mixed approxi-
mations of elliptic SPDEs. Mugler and Starkloff [17] proposed a new approach based on a stochastic Petrov-Galerkin
projection scheme for solving the steady-state stochastic diffusion equation with boundedness assumptions on the
random coefficients weaker than those usually considered in the literature. Qu and Xu [18] presented convergence
analysis of a stochastic Galerkin approach for solving the Stokes equations with random coefficients, whose solution
is discretized using spectral and generalized polynomial chaos (PC) expansions for its spatial and random part, re-
spectively. In particular, the analysis of Babus̆ka et al. [7] for stochastic elliptic SPDEs is extended to saddle-point
problems. Error estimates (in classical Bochner spaces) for the spatial FE approximation of the steady-state diffusion
equation with log-normal random coefficients are derived in [19], including KL truncation and quadrature errors.

In the case of parabolic SPDE models, error estimates have been proved by Nobile and Tempone [13] for thesemi-
discretemodel, i.e., with no temporal discretization. These estimates hold under appropriate analyticity assumptions
in the complex plane. We would like to highlight here that there also exists a vast literature in the setting of infinite-
dimensional noise; see, for example [20–27]. The focus of the present analysis is on finite-dimensional noise in the
setting of tensor product Sobolev spaces.

In the present work, we consider elliptic and parabolic SPDEs in the setting of finite-dimensional noise. We fo-
cus on the case when the SPDE coefficients depend on a finite number of independent and identically distributed
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(i.i.d) uniform random variables. For example, SPDE coefficients modeled as random fields can be discretized using
a truncated KL expansion [28], leading to the SPDE solution depending on a finite number of uncorrelated random
variables. For the sake of convenience, statistical independence of the random variables is often introduced as an
additional modeling assumption [7, 14]. Our objective is to derivea priori error estimates in Sobolev norms for Leg-
endre chaos-based FE approximations of a class of elliptic and parabolic linear SPDEs. The analysis presented here
is based on the assumption that the SPDE solution satisfies certain spatial and stochastic regularity conditions. More
specifically, we shall assume that the partial derivatives of the SPDE solution with respect to the spatial and stochastic
coordinates, up to a given order, are square integrable. Note that this is different from the polydisc analyticity assump-
tions used in previous theoretical studies on elliptic SPDEs [9] and the semi-discrete form of parabolic SPDEs [13].
We first derive a priori error estimates for FE approximations of elliptic SPDEs. Following this, we present stability
analysis of a class of weighted temporal discretization schemes applied to parabolic SPDEs. To the best of our knowl-
edge, stability analysis of temporal discretization schemes for parabolic SPDE models has not been presented before
in the literature. Based on the stability analysis results, we provea priori error estimates for FE approximations of
parabolic SPDEs (in conjunction with Legendre chaos expansions and weighted temporal discretization) as a function
of the spatial, temporal, and stochastic discretization parameters. We also show how sharper a priori error estimates
can be derived for elliptic and parabolic SPDE models using duality arguments.

To illustrate how the theoretical results can be applied to specific SPDE models, we consider the steady-state
and time-dependent versions of the stochastic diffusion equation. As a final example, we consider the adjoint-based
approach for superconvergent recovery of linear functionals, originally developed by Pierce and Giles [29] for deter-
ministic PDE models. In a recent study, Butler et al. [30] extended this approach to SPDE models in order to construct
a posteriori error bounds. In the present paper, we consider a special class of linear output functionals depending
on the solution of elliptic SPDEs. We prove that primal and adjoint-based recovery schemes are superconvergent for
stochastic FE approximations using the theoretical results established in the earlier part of this paper.

The remainder of this paper is organized as follows. We set up the mathematical background and notations in
Section 2. In Section 3 we provide error estimates for elliptic SPDEs (see Theorems 1 and 2). We examine in Section
4 the case of parabolic SPDEs and prove error estimates (see Theorems 3, 4, and 5) for a class of weighted temporal
discretization schemes. Stability results for the weighted temporal discretization schemes are provided in Lemmas 2
and 3. In Section 5 we specify the error bound in the case of a steady-state stochastic diffusion equation (see The-
orem 6) and discuss in the parabolic case the influence of the stochastic parameters of the model on the time-step
restriction. In Section 6 we finally carry out an error analysis of a class of linear output functional approximations
leveraging the a priori estimates derived earlier for elliptic SPDEs. Section 7 concludes the paper and outlines some
directions for further work.

2. PRELIMINARIES

2.1 Notations and Definitions

To introduce our notations, we first start with the setting of elliptic SPDEs whose solutionu(x ;ξ) is defined onD×Ω,
wherex ∈ D ⊂ Rd represents the spatial coordinates andD is an open, connected, bounded convex subset ofRd with
polygonal boundary∂D. We denote the probability space by the triplet(Ω,F ,P), whereΩ ⊂ Rq is the sample space,
F is theσ-algebra associated withΩ andP is a probability measure. The vectorξ : Ω → RM represents independent
real random variables with joint probability density function (pdf)ρ(ξ). Throughout this paper we shall consider i.i.d
uniform random variables. We denote byΓ = Γ1 × · · · × ΓM the joint image of the random vectorξ and by〈·〉 the
expectation operator with respect toρ, that is,〈·〉 =

∫
Γ
· ρ(ξ)dξ.

In practice, random field discretization schemes such as KL expansions [28] are used to approximate the random
fields within the SPDE model by a finite number of random variables. Hence, it can be shown that the SPDE solution
u(x ;ω) with ω ∈ Ω is described by a finite number of random variables, i.e., the SPDE solutionu(x ; ω) is given
by a deterministic parametrized PDE with solutionu(x ;ξ(ω)). In the analysis that follows in this paper, we do not
account for the error associated with random field discretizations; for a detailed error analysis of KL discretization,
see Babŭska et al. [7].
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The SPDE solutionu will be sought inW = V ⊗ S whereV andS denote Hilbert spaces of spatial and random
functions, respectively. Typically,V will be a Sobolev space such asH1

0 (D) or H1(D) and we shall consider the
random function spaceS = L2(Γ). When additional assumptions will be required on the stochastic regularity of the
SPDE solution we shall considerS = Hk(Γ), i.e., the partial derivatives ofu(x ; ξ) with respect toξ, up to orderk,
will be assumed to be inV ⊗ L2(Γ). In other words,|| · ||W will denote a tensor product Sobolev norm, for example,

||u||L2(D)⊗L2(Γ) =
(∫

Γ

∫

D
|u(x ; ξ)|2ρ(ξ)dxdξ

)1/2

,

||u||H1(D)⊗L2(Γ) =
(∫

Γ

∫

D

(|u(x ;ξ)|2 + |∇u(x ;ξ)|2) ρ(ξ)dxdξ

)1/2

,

and

||u||H1
0 (D)⊗L2(Γ) =

(∫

Γ

∫

D
|∇u(x ;ξ)|2ρ(ξ)dxdξ

)1/2

.

Note that for bounded domainsD, the norms|| · ||H1(D)⊗L2(Γ) and|| · ||H1
0 (D)⊗L2(Γ) are equivalent from Poincaré’s

inequality. More generally, the norm|| · ||L2(D)⊗Hk(Γ) is given by

||u||L2(D)⊗Hk(Γ) =
(∫

Γ

∑

0≤|β|≤k

∣∣∣∣Dβ
ξ u(· ; ξ)

∣∣∣∣2
L2(D)

ρ(ξ)dξ

)1/2

, (1)

where the differential operatorDβ
ξ is defined by

Dβ
ξ =

∂|β|

∂ξ
β1
1 . . . ∂ξ

βM

M

(2)

for every multi-indexβ = (β1, . . . , βM ), |β| = β1 + · · ·+ βM .
In the case of parabolic SPDEs, we write the solution asu(x, t ; ξ), wheret ∈ [0, T ] denotes time (T < +∞).

The SPDE solution is such thatu ∈ L2(0, T ;W) and∂u/∂t ∈ L2(0, T ;W ′), that is,

∫ T

0

(
||u(·, s ; ·)||2W +

∣∣∣∣
∣∣∣∣
∂u

∂t
(·, s ; ·)

∣∣∣∣
∣∣∣∣
2

W′

)
ds < +∞,

whereW ′ denotes the dual space ofW.
In the following sections, we shall outline the strong form of the elliptic and parabolic SPDE models considered

in this paper along with the associated stochastic weak formulations.

2.2 Weak Form of Elliptic SPDEs

The elliptic SPDEs that we consider can be written in the general form

Lξu(x ; ξ) = f(x ; ξ) a.s. inD × Ω,

Bξu(x ; ξ) = g(x ; ξ) a.s. on∂D × Ω,
(3)

whereLξ is a linear parametrized elliptic differential operator in space andBξ is a parametrized operator indicating
the type of boundary conditions that are imposed, namely Dirichlet, Neumann, or mixed boundary conditions. The
weak formulation corresponding to (3) is given by

Findu ∈ W such that:
A(u, v) = l(v), ∀v ∈ W. (4)
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We assume that the bilinear formA is continuous and elliptic with respect to the norm|| · ||W , that is,

∃αc > 0 such that∀u, v ∈ W, |A(u, v)| ≤ αc ||u||W ||v||W , (5)

∃αe > 0 such that∀u ∈ W, A(u, u) ≥ αe ||u||2W . (6)

We also assume that the following boundedness condition holds

∃γ > 0 such that|l(v)| ≤ γ ||v||W , ∀v ∈ W. (7)

The existence and uniqueness of the solution of (4) is then guaranteed by the Lax-Milgram theorem [31]. Concern-
ing the regularity of the solution some additional problem-dependent assumptions are required. In Appendix A, the
continuity and coercivity conditions (5) and (6) are proved for a class of second-order SPDEs.

2.3 Weak Form of Parabolic SPDEs

We consider parabolic SPDEs written in the general form

∂u(x, t ; ξ)
∂t

+ Lξu(x, t ;ξ) = f(x, t ; ξ) a.s. inD × [0, T ]× Ω,

Bξu(x, t ;ξ) = g(x ;ξ) a.s. on∂D × [0, T ]× Ω,

u(x, 0 ; ξ) = u0(x ;ξ) a.s. onD × Ω,

(8)

where the random coefficients inLξ are assumed to be independent of time. The stochastic weak problem associated
with (8) is thus given by

Findu(·, t ; ·) ∈ W such that:




(
∂u

∂t
, v

)

L2(D)⊗L2(Γ)

+ A(u, v) = l(v, t), ∀v ∈ W ,

u(x, 0 ; ξ) = u0(x ; ξ).

(9)

We assume that the continuity and ellipticity conditions (5) and (6) hold for the bilinear form along with the following
boundedness condition:

∃γ(t) > 0 such that|l(v, t)| ≤ γ(t) ||v||W , ∀v ∈ W. (10)

As an example, let us consider Dirichlet boundary conditions in the SPDE model (8). Hencel is given byl(v, t) =
(f(·, t ; ·), v)L2(D)⊗L2(Γ) meaning thatγ(t) = ||f(·, t ; ·)||L2(D)⊗L2(Γ).

To guarantee the existence, uniqueness and regularity of the SPDE solution of (8), problem-dependent assump-
tions are needed. As an illustration, a stochastic diffusion model is discussed later in Section 5 where positivity and
boundedness of the random field as well as the source term are required.

2.4 Finite-Dimensional Subspaces for Spatial and Stochastic Discretization

We shall now introduce the finite-dimensional subspacesVh ⊂ V andSpξ ⊂ S used for the numerical approximation
of (4) and (9). First, letT be a triangulation of the domainD consisting of a finite collection of triangles (resp.
tetrahedra)Ti such thatTi ∩ Tj = ∅ for i 6= j,

⋃
i Ti = D, and such that no vertex lies in the interior of an edge (resp.

a face) of another triangle (resp. tetrahedron). We consider a family of triangulationsTh with mesh-sizeh ∈ [0, 1[,
which are supposed to be nondegenerate, i.e., there exists a constantµ > 0 such that

diam(BT ) ≥ µ diam(T ),

for all T ∈ Th andh ∈ [0, 1[, whereBT is the largest ball contained inT , and such that

max
{

diam(T ), T ∈ Th

} ≤ h diam(D).
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Later in our analysis, we shall also consider quasi-uniform triangulations for which the inequality

min
{

diam(BT ), T ∈ Th

} ≥ µh diam(D)

holds, for allh ∈ [0, 1[, µ > 0. Note that quasi-uniform triangulations are nondegenerate.
The finite-dimensional subspaceVh ⊂ H1

0 (D) can be defined as follows

Vh = span
{
φi(x)

}n

i=1
, (11)

whereφi : Th → R denotes a piecewise linear continuous FE basis function linked to theith node ofTh and that
vanishes on∂D. We shall generalize our analysis to smooth domains and higher-order FE approximations later on.

Using the multi-index notationα = (α1, α2, . . . ) with αi ∈ N, theM -dimensional space of polynomial chaos of
degreepξ ∈ N can be defined as [43]

Spξ = span

{
Lα(ξ) =

M∏

i=1

Lαi
(ξi), |α| =

M∑

i=1

αi ≤ pξ

}
, (12)

whereLαi denotes a one-dimensional Legendre polynomial of degreeαi. Note that the cardinality ofSpξ is equal to
Nξ = [(M + pξ)!]/M !pξ!.

3. A PRIORI ERROR ESTIMATES FOR ELLIPTIC SPDES

Consider the solution of (4) which can be written asu ∈ W = V ⊗ S. Let uh,pξ
∈ Vh ⊗ Spξ denote the FE

approximation ofu given by

uh,pξ
(x ;ξ) =

∑

|α|≤pξ

uα,h(x)Lα(ξ) =
∑

|α|≤pξ

n∑

i=1

ci
α,hφi(x)Lα(ξ). (13)

The undetermined coefficientsci
α,h, i = 1, 2, . . . , n, |α| ≤ pξ, are computed by solving the weak form

A(uh,pξ
, vh,pξ

) = l(vh,pξ
), ∀vh,pξ

∈ Vh ⊗ Spξ . (14)

Our objective is to provide a priori error estimates for||u− uh,pξ
||H1(D)⊗L2(Γ) when consideringV = H1

0 (D) ∩
H2(D) andS = Hk(Γ), i.e., under the assumption that the SPDE solution satisfies some spatial and stochastic regu-
larity conditions; see Theorem 1 for the general case. Under additional problem-dependent assumptions, sharper error
bounds can be obtained in the norm|| · ||L2(D)⊗L2(Γ) using a duality argument; see Theorem 2. It is worth mentioning
here that a priori error estimates can also be obtained for Galerkin approximations of stochastic diffusion models
under the assumption that the SPDE solution satisfies some analyticity conditions. More specifically, Nobile, Tem-
pone, and co-workers provide exponential convergence rates [9] when the SPDE solution obeys polydisc analyticity
assumptions in the complex plane, using an approximation result for holomorphic functions by Bagby et al. [32].

Using (4)–(6) and (14) we obtain the following inequality from Céa’s lemma:

||u− uh,pξ
||V⊗L2(Γ) ≤

αc

αe
||u− vh,pξ

||V⊗L2(Γ), ∀vh,pξ
∈ Vh ⊗ Spξ . (15)

In order to proceed further, we need to estimate an upper bound for||u − vh,pξ
||V⊗L2(Γ) for any interpolantvh,pξ

∈
Vh ⊗Spξ . Consider the splittingu− vh,pξ

= u− vpξ
+ vpξ

− vh,pξ
wherevpξ

is the projection ofu ontoV ⊗ Spξ ,
that is,

vpξ
(x ; ξ) =

∑

|α|≤pξ

vα(x)Lα(ξ), (16)
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with

vα(x) =
(u(x ; ·), Lα)L2(Γ)

||Lα||2L2(Γ)

. (17)

Using the orthogonality of the PC basisLα in L2(Γ), we get

||u− vh,pξ
||2V⊗L2(Γ) = ||u− vpξ

||2V⊗L2(Γ) + ||vpξ
− vh,pξ

||2V⊗L2(Γ). (18)

We first focus onpξ-error estimation(see Lemma 1) corresponding to the stochastic discretization and then pro-
vide the fullpξ-h error estimation(see Theorem 1) which accounts for both the spatial and stochastic discretization
parameters.

Lemma 1. Let u ∈ V ⊗ Hk(Γ) andvpξ
∈ V ⊗ Spξ defined by (16) withSpξ given by (12). Then the following

inequality holds:
||u− vpξ

||V⊗L2(Γ) ≤ C(M) p−k
ξ ||u||V⊗Hk(Γ), (19)

whereC is a constant independent ofpξ that grows linearly withM .

Proof. This result is proved in Appendix B.

We are now in a position to derive error estimates for||u− uh,pξ
||H1(D)⊗L2(Γ) when consideringV = (H1

0 (D)∩
H2(D)) andS = Hk(Γ).

Theorem 1. Let u ∈ (H1
0 (D)∩H2(D))⊗Hk(Γ) be the solution of the weak formulation (4) anduh,pξ

∈ Vh⊗Spξ

denote the solution of (14). The bilinear formA is assumed to beαc-continuous andαe-elliptic with respect to the
norm|| · ||H1(D)⊗L2(Γ). Then the following error estimate holds:

||u− uh,pξ
||H1(D)⊗L2(Γ) ≤

αc

αe

(
C(M) p−k

ξ ||u||H1(D)⊗Hk(Γ) + C∗h ||u||H2(D)⊗L2(Γ)

)
, (20)

whereC andC∗ are constants independent ofpξ andh.

Proof. Coming back to the inequality (15) given by Céa’s lemma, and using the splitting (18), we have

||u− uh,pξ
||2H1(D)⊗L2(Γ) ≤

α2
c

α2
e

(
||u− vpξ

||2H1(D)⊗L2(Γ) + ||vpξ
− vh,pξ

||2H1(D)⊗L2(Γ)

)
.

Applying thepξ-error estimate (19) yields

||u− uh,pξ
||2H1(D)⊗L2(Γ) ≤

α2
c

α2
e

(
C(M)2p−2k

ξ ||u||2H1(D)⊗Hk(Γ) + ||vpξ
− vh,pξ

||2H1(D)⊗L2(Γ)

)
. (21)

To estimate the second term in the right-hand side of (21), we expandvpξ
andvh,pξ

in an orthogonal Legendre PC
basis, which gives

||vpξ
− vh,pξ

||2H1(D)⊗L2(Γ) =
∑

|α|≤pξ

||vα − vα,h||2H1(D) ||Lα||2L2(Γ).

Using the classical interpolation error estimate for piecewise linear basis functions,

||vα − vα,h||H1(D) ≤ C∗h ||vα||H2(D),

whereC∗ is a constant independent ofh, we get

||vpξ
− vh,pξ

||2H1(D)⊗L2(Γ) ≤ C∗2h2
∑

|α|≤pξ

||vα||2H2(D)||Lα||2L2(Γ) ≤ C∗2h2||u||2H2(D)⊗L2(Γ) (22)

sinceu(x ; ξ) =
∑
α

vα(x)Lα(ξ). Combining (21) and (22) leads to (20) and concludes the proof.
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In the a priori error estimate (20), the number of random variablesM appears in the constantC and in the norms
||u||H1(D)⊗Hk(Γ) and||u||H2(D)⊗L2(Γ) throughΓ = Γ1 × · · · × ΓM . If we assume that the norm||u||H1(D)⊗Hk(Γ)

of the analytical solution can be bounded independently ofM , then it can be seen from (20) that the stochastic
discretization error (without taking into account the error associated with random field discretization) tends to zero
whenpξ → +∞, for any fixed value ofM . From a practical point of view, it can be more convenient to consider the
stochastic convergence rate in terms of the total number of PC basis functions (Nξ) and the total number of random
variables (M ) instead of the PC order (pξ) [9]. From the definition ofNξ = Nξ(M, pξ), we can estimatep−k

ξ as a
function ofM andNξ and rewrite the error estimate as follows.

Corollary 1. Under the same assumptions as in Theorem 1, the error estimate (20) can be written as

||u− uh,pξ
||H1(D)⊗L2(Γ) ≤

αc

αe

(
C(M)

(
1 + log(M)

log(Nξ)

)k

||u||H1(D)⊗Hk(Γ) + C∗h ||u||H2(D)⊗L2(Γ)

)
.

(23)

Proof. The number of PC basis functionsNξ can be estimated as follows (see [13] and [9]):

Nξ =
(M + pξ)!

M !pξ!
=

M∏

j=1

(
1 +

pξ

j

)
≤

M∏

j=1

exp
(

pξ

j

)
= exp

(
pξ

M∑

j=1

1
j

)
≤ exp

(
pξ(1 + log(M))

)

leading to the inequality
1
pξ

≤ 1 + log(M)
log(Nξ)

. (24)

Substituting (24) in (20) gives (23).

Corollary 1 indicates that if the norm||u||H1(D)⊗Hk(Γ) can be bounded independently ofM , then the stochastic
error tends to zero whenM → +∞ andpξ → +∞. It is to be noted that the boundedness of||u||H1(D)⊗Hk(Γ) with
respect toM is problem dependent.

We shall now derive a sharper error estimate in the norm|| · ||L2(D)⊗L2(Γ) using duality arguments when consid-
ering elliptic SPDEs with Dirichlet boundary conditions. In this case, the weak form writes as
Findu ∈ V ⊗ S such that:

A(u, v) = (f, v)L2(D)⊗L2(Γ), ∀v ∈ V ⊗ S, (25)

with V = H1
0 (D) ∩H2(D) andS = Hk(Γ), while the adjoint (or dual) variational problem associated with (25) is

given by
Findw ∈ V ⊗ S such that:

A(v, w) = (g, v)L2(D)⊗L2(Γ), ∀v ∈ V ⊗ S. (26)

We shall assume that the adjoint solution satisfies the regularity conditions

||w||H2(D)⊗L2(Γ) ≤ Cr||g||L2(D)⊗L2(Γ),

||w||H1(D)⊗Hk(Γ) ≤ C̃r||g||L2(D)⊗L2(Γ),
(27)

for all g ∈ L2(D)⊗ L2(Γ), whereCr andC̃r are constants independent ofw.

Theorem 2. Let u denote the solution of (25) and letuh,pξ
∈ Vh⊗Spξ be its FE-based approximate solution. Under

the regularity conditions (27), the following error estimate holds:

||u− uh,pξ
||L2(D)⊗L2(Γ) ≤

α2
c

αe

((
A1(M)||u||H1(D)⊗Hk(Γ) + A2(M)||u||H2(D)⊗L2(Γ)

)
p−2k

ξ

+
(
B1(M)||u||H1(D)⊗Hk(Γ) + B2(M)||u||H2(D)⊗L2(Γ)

)
h2

)
, (28)

whereA1, A2, B1, andB2 are constants independent ofpξ andh.

International Journal for Uncertainty Quantification



A Priori Error Estimates for Elliptic and Parabolic SPDEs 431

Proof. Let w be the solution of (26) withg = u− uh,pξ
. We have

||u− uh,pξ
||2L2(D)⊗L2(Γ) = (u− uh,pξ

, u− uh,pξ
)L2(D)⊗L2(Γ) = A(u− uh,pξ

, w) = A(u− uh,pξ
, w − wh,pξ

),

sinceA(u− uh,pξ
, wh,pξ

) = 0 for all wh,pξ
∈ Vh ⊗ Spξ . Thus, we get:

||u− uh,pξ
||2L2(D)⊗L2(Γ) ≤ αc||u− uh,pξ

||H1(D)⊗L2(Γ)||w − wh,pξ
||H1(D)⊗L2(Γ).

An upper bound for the term||u − uh,pξ
||H1(D)⊗L2(Γ) can be obtained using (20). Concerning the second term, we

can use the error estimate that holds for interpolants (using a tensor product of linear FE basis functions and Legendre
PC basis functions) inVh ⊗ Spξ , that is,

inf
vh,pξ

∈Vh⊗Spξ
||u− vh,pξ

||H1(D)⊗L2(Γ) ≤ C(M) p−k
ξ ||u||H1(D)⊗Hk(Γ) + C∗h ||u||H2(D)⊗L2(Γ).

Hence, it follows that

||u− uh,pξ
||2L2(D)⊗L2(Γ) ≤

α2
c

αe

(
C(M) p−k

ξ ||u||H1(D)⊗Hk(Γ) + C∗h ||u||H2(D)⊗L2(Γ)

)

×
(

C(M) p−k
ξ ||w||H1(D)⊗Hk(Γ) + C∗h ||w||H2(D)⊗L2(Γ)

)
.

From (27), we have
||w||H2(D)⊗L2(Γ) ≤ Cr||u− uh,pξ

||L2(D)⊗L2(Γ),

||w||H1(D)⊗Hk(Γ) ≤ C̃r||u− uh,pξ
||L2(D)⊗L2(Γ),

which yields

||u− uh,pξ
||L2(D)⊗L2(Γ)

≤ α2
c

αe

(
C(M) p−k

ξ ||u||H1(D)⊗Hk(Γ) + C∗h ||u||H2(D)⊗L2(Γ)

)
×

(
C(M)C̃rp

−k
ξ + C∗Crh

)

=
α2

c

αe

(
C(M)2C̃r||u||H1(D)⊗Hk(Γ) p−2k

ξ + C∗2Cr||u||H2(D)⊗L2(Γ) h2

+ C(M)C∗
(
Cr||u||H1(D)⊗Hk(Γ) + C̃r||u||H2(D)⊗L2(Γ)

)
hp−k

ξ

)
.

Using the inequalityhp−k
ξ ≤ (1/2)(h2 + p−2k

ξ ) and reordering terms, we obtain the final error estimate (28) with

A1(M) = C(M)2C̃r + [C(M)C∗Cr/2], A2(M) = C(M)C∗C̃r/2, B1(M) = C(M)C∗Cr/2, andB2(M) =
C∗2Cr + [C(M)C∗C̃r/2]. This concludes the proof.

4. A PRIORI ERROR ESTIMATES FOR PARABOLIC SPDES

4.1 Time-Stepping Scheme

We now focus on numerical solution of the weak form (9) where Dirichlet boundary conditions are considered in the
parabolic SPDE model (8). We consider aθ-weighted temporal discretization scheme withθ ∈ [0, 1] which results in
the following weak problem:

Volume 4, Number 5, 2014



432 Audouze & Nair

Findum
h,pξ

∈ Vh ⊗ Spξ , 0 ≤ m ≤ Nt, such that:




(
um+1

h,pξ
− um

h,pξ

∆t
, vh,pξ

)

L2(D)⊗L2(Γ)

+ A(um+θ
h,pξ

, vh,pξ
) = (fm+θ

h,pξ
, vh,pξ

)L2(D)⊗L2(Γ),

(u0
h,pξ

− u0, vh,pξ
)L2(D)⊗L2(Γ) = 0,

(29)

for all vh,pξ
∈ Vh ⊗ Spξ , whereum

h,pξ
andfm

h,pξ
denote the approximate solution and source term computed at time

tm = m∆t, for 0 ≤ m ≤ Nt and∆t = T/Nt. In (29)um+θ
h,pξ

andfm+θ
h,pξ

are defined as

um+θ
h,pξ

= θ um+1
h,pξ

+ (1− θ) um
h,pξ

, (30)

and
fm+θ

h,pξ
= θ fm+1

h,pξ
+ (1− θ) fm

h,pξ
. (31)

The casesθ = 0, θ = 1/2, andθ = 1 correspond to the forward Euler, Crank-Nicolson, and backward Euler schemes,
respectively. Our aim is to estimate an upper bound for the error metric

max
m=1,...,Nt

||u(·, tm ; ·)− um
h,pξ

||L2(D)⊗L2(Γ), (32)

whereu andum
h,pξ

denote the solutions of (9) and (29), respectively.

4.2 Stability Analysis

In this section, we prove stability results for the temporal discretization scheme (29) using ideas from the analysis of
Süli [33]. We first show that (29) is unconditionally stable forθ ∈ [1/2, 1] (see Lemma 2) and then we prove that (29)
is conditionally stable forθ ∈ [0, 1/2[ under some restrictions (see Lemma 3).

Lemma 2. Let um
h,pξ

∈ Vh⊗Spξ be the solution of (29) withθ ∈ [1/2, 1], whereA is αc-continuous andαe-elliptic

onV ⊗ S with respect to the norm|| · ||H1(D)⊗L2(Γ). The spatial triangulation ofD ⊂ Rd is nondegenerate. Then the
following inequality holds:

max
k=1,...Nt

||uk
h,pξ

||2L2(D)⊗L2(Γ) ≤ ||u0
h,pξ

||2L2(D)⊗L2(Γ) +
∆t

αe

Nt−1∑
m=0

||fm+θ
h,pξ

||2L2(D)⊗L2(Γ), (33)

wherefm+θ
h,pξ

is given by (31).

Proof. This result is proved in Appendix C.1.

Lemma 3. Consider the same assumptions as in Lemma 2 with a quasi-uniform spatial discretization ofD. For
θ ∈ [0, 1/2[, the following stability condition

max
k=1,...Nt

||uk
h,pξ

||2L2(D)⊗L2(Γ) ≤ ||u0
h,pξ

||2L2(D)⊗L2(Γ) + ∆t cε

Nt−1∑
m=0

||fm+θ
h,pξ

||2L2(D)⊗L2(Γ), (34)

holds under the assumptions

∆t

h2
≤ 2αe(C2

D + 1)− 4ε2C2
D

(C2
D + 1)(1− 2θ)α2

c(C∗i )2(1 + ε)
, 0 < ε ≤

(
αe(1 + C2

D)
2C2

D

)1/2

, (35)

whereC∗i is defined by (C.4) andcε is given bycε = (1− 2θ) (1 + (1/ε))∆t + (1/4ε2).

Proof. A proof of this result can be found in Appendix C.2.

We shall discuss the stability analysis results in the context of the stochastic diffusion equation later in Section 5.3.
In particular, we shall discuss the role played by the correlation length and standard deviation of the random field on
the time-step restriction.
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4.3 A Priori Error Estimates

Theorem 3. Let u ∈ L2(0, T ;W) be the solution of the weak form (9) with Dirichlet boundary conditions, where
W = (H1

0 (D) ∩H2(D)) ⊗Hk(Γ) and∂u/∂t ∈ L2(0, T ;W ′). We assume that the source termf and its temporal
derivatives are smooth enough and that the initial valueu0 belongs at least toH2(D)⊗Hk(Γ). The bilinear formA
is assumed to beαc-continuous andαe-elliptic with respect to the norm|| · ||H1(D)⊗L2(Γ). Let um

h,pξ
∈ Vh ⊗ Spξ

denote the solution of theθ-scheme (29) withθ ∈ [1/2, 1], where the finite-dimensional spacesVh andSpξ are given
by (11) and (12), respectively. The spatial triangulation is supposed to be nondegenerate. Then the following error
estimate holds:

max
m=1,...,Nt

||u(·, tm ; ·)− um
h,pξ

||L2(D)⊗L2(Γ) ≤ C1 h + C2 ∆t + C3 p−k
ξ , (36)

where the constantsC1, C2, C3 > 0 are independent ofh and∆t, and only depend on the analytical solution as
follows:

C1 =
C∗αc

αe

(
max

m=1,2,...,Nt

||u(·, tm , ·)||H2(D)⊗L2(Γ) + ||u0||H2(D)⊗L2(Γ) +
2√
αe

K1(u, T )
)

,

C2 =
√

2
αe

K2(u, T ),

C3 =
C(M)αc

αe

(
max

m=1,2,...,Nt

||u(·, tm , ·)||H1(D)⊗Hk(Γ) + ||u0||H1(D)⊗Hk(Γ) +
2√
αe

K3(u, T )
)

,

The constantsC(M) andC∗ are independent ofpξ andh, and the constantsK1, K2, andK3 are given by

K1(u, T ) =

(∫ T

0

∣∣∣∣
∣∣∣∣
∂u

∂t
(·, s ; ·)

∣∣∣∣
∣∣∣∣
2

H2(D)⊗L2(Γ)

ds

)1/2

, (37)

K2(u, T ) =

(∫ T

0

∣∣∣∣
∣∣∣∣
∂2u

∂t2
(·, s ; ·)

∣∣∣∣
∣∣∣∣
2

L2(D)⊗L2(Γ)

ds

)1/2

, (38)

K3(u, T ) =

(∫ T

0

∣∣∣∣
∣∣∣∣
∂u

∂t
(·, s ; ·)

∣∣∣∣
∣∣∣∣
2

H1(D)⊗Hk(Γ)

ds

)1/2

. (39)

Proof. We first split the approximation error as

em
h,pξ

= u(·, tm ; ·)− um
h,pξ

= u(·, tm ; ·)− Pu(·, tm ; ·)︸ ︷︷ ︸
ηm

h,pξ

+ Pu(·, tm ; ·)− um
h,pξ︸ ︷︷ ︸

ξm
h,pξ

, (40)

whereP : V ⊗ S → Vh ⊗ Spξ is the elliptic projection defined by the Galerkin conditions:

A(Pu(·, t ; ·), vh,pξ
) = A(u(·, t ; ·), vh,pξ

), ∀vh,pξ
∈ Vh ⊗ Spξ .

The existence and uniqueness ofPu(·, t ; ·) is a consequence of the Lax-Milgram theorem (see [31]). Hence we need
to estimate

max
m=1,...,Nt

||em
h,pξ

||L2(D)⊗L2(Γ) ≤ max
m=1,...,Nt

||ηm
h,pξ

||L2(D)⊗L2(Γ) + max
m=1,...,Nt

||ξm
h,pξ

||L2(D)⊗L2(Γ). (41)

Since we have
A(ηm

h,pξ
, vh,pξ

) = 0, ∀vh,pξ
∈ Vh ⊗ Spξ ,
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we can use the error estimate (20) that we proved earlier in Theorem 1 for elliptic SPDEs,

||ηm
h,pξ

||L2(D)⊗L2(Γ) ≤ ||ηm
h,pξ

||H1(D)⊗L2(Γ)

≤ αc

αe

(
C(M) p−k

ξ ||u(·, tm ; ·)||H1(D)⊗Hk(Γ) + C∗ h ||u(·, tm ; ·)||H2(D)⊗L2(Γ)

)
. (42)

We focus now on estimating an upper bound for||ξm
h,pξ

||L2(D)⊗L2(Γ). From (40) and (30) we substitute

um
h,pξ

= u(·, tm ; ·)− (ηm
h,pξ

+ ξm
h,pξ

)

and
um+θ

h,pξ
= θ

(
u(·, tm+1 ; ·)− (ηm+1

h,pξ
+ ξm+1

h,pξ
)
)

+ (1− θ)
(
u(·, tm ; ·)− (ηm

h,pξ
+ ξm

h,pξ
)
)

into theθ-scheme (29). Using (31), we note thatξm
h,pξ

are the solution of

(
ξm+1

h,pξ
− ξm

h,pξ

∆t
, vh,pξ

)

L2(D)⊗L2(Γ)

+ A(ξm+θ
h,pξ

, vh,pξ
) = (ϕm+θ

h,pξ
, vh,pξ

)L2(D)⊗L2(Γ) (43)

with

ϕm+θ
h,pξ

=
u(·, tm+1 ; ·)− u(·, tm ; ·)

∆t
− ∂u

∂t
(·, tm+θ ; ·)−

ηm+1
h,pξ

− ηm
h,pξ

∆t
and

∂u

∂t
(·, tm+θ ; ·) = θ

∂u

∂t
(·, tm+1 ; ·) + (1− θ)

∂u

∂t
(·, tm ; ·).

We then apply the stability result (33) to (43), which yields

max
m=1,...,Nt

||ξm
h,pξ

||2L2(D)⊗L2(Γ) ≤ ||ξ0
h,pξ

||2L2(D)⊗L2(Γ) +
∆t

αe

Nt−1∑
m=0

||ϕm+θ
h,pξ

||2L2(D)⊗L2(Γ) (44)

with

||ϕm+θ
h,pξ

||L2(D)⊗L2(Γ) ≤
∣∣∣∣
∣∣∣∣
u(·, tm+1 ; ·)− u(·, tm ; ·)

∆t
− ∂u

∂t
(·, tm+θ ; ·)

∣∣∣∣
∣∣∣∣
L2(D)⊗L2(Γ)︸ ︷︷ ︸

(I)

+
∣∣∣∣
∣∣∣∣
ηm+1

h,pξ
− ηm

h,pξ

∆t

∣∣∣∣
∣∣∣∣
L2(D)⊗L2(Γ)︸ ︷︷ ︸

(II)

. (45)

We first consider the estimation of(I). Noting that

u(·, tm+1 ; ·)− u(·, tm ; ·)
∆t

− ∂u

∂t
(·, tm+θ ; ·) = θ

(
u(·, tm+1 ; ·)− u(·, tm ; ·)

∆t
− ∂u

∂t
(·, tm+1 ; ·)

)

+ (1− θ)
(

u(·, tm+1 ; ·)− u(·, tm ; ·)
∆t

− ∂u

∂t
(·, tm ; ·)

)

and using Taylor’s formulas with integral remainders

u(·, tm+1 ; ·) = u(·, tm ; ·) + ∆t
∂u

∂t
(·, tm ; ·) +

∫ tm+1

tm

(tm+1 − s)
∂2u

∂t2
(·, s ; ·)ds

u(·, tm ; ·) = u(·, tm+1 ; ·)−∆t
∂u

∂t
(·, tm+1 ; ·) +

∫ tm

tm+1
(tm − s)

∂2u

∂t2
(·, s ; ·)ds,
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we have

(I) ≤ θ

∆t

∣∣∣∣
∣∣∣∣
∫ tm+1

tm

(tm − s)
∂2u

∂t2
(·, s ; ·)ds

∣∣∣∣
∣∣∣∣
L2(D)⊗L2(Γ)

+
1− θ

∆t

∣∣∣∣
∣∣∣∣
∫ tm+1

tm

(tm+1 − s)
∂2u

∂t2
(·, s ; ·)ds

∣∣∣∣
∣∣∣∣
L2(D)⊗L2(Γ)

.

Applying the Minkowsky inequality, we get

(I) ≤ θ

∆t

∫ tm+1

tm

|tm − s|
∣∣∣∣
∣∣∣∣
∂2u

∂t2
(·, s ; ·)

∣∣∣∣
∣∣∣∣
L2(D)⊗L2(Γ)

ds +
1− θ

∆t

∫ tm+1

tm

|tm+1 − s|
∣∣∣∣
∣∣∣∣
∂2u

∂t2
(·, s ; ·)

∣∣∣∣
∣∣∣∣
L2(D)⊗L2(Γ)

ds.

Since|tm − s| ≤ ∆t and|tm+1 − s| ≤ ∆t, it follows that

(I) ≤
∫ tm+1

tm

∣∣∣∣
∣∣∣∣
∂2u

∂t2
(·, s ; ·)

∣∣∣∣
∣∣∣∣
L2(D)⊗L2(Γ)

ds ≤
√

∆t

(∫ tm+1

tm

∣∣∣∣
∣∣∣∣
∂2u

∂t2
(·, s ; ·)

∣∣∣∣
∣∣∣∣
2

L2(D)⊗L2(Γ)

ds

)1/2

=
√

∆t αm(u) (46)

using the Cauchy-Schwarz inequality.
Concerning the second term(II), we use the fact that

A

(
ηm+1

h,pξ
− ηm

h,pξ

∆t
, vh,pξ

)
= 0, ∀vh,pξ

∈ Vh ⊗ Spξ .

Using the error estimate (20) again leads to

(II) ≤ αc

αe

(
C(M) p−k

ξ

∣∣∣∣
∣∣∣∣
u(·, tm+1 ; ·)− u(·, tm ; ·)

∆t

∣∣∣∣
∣∣∣∣
H1(D)⊗Hk(Γ)

+ C∗ h

∣∣∣∣
∣∣∣∣
u(·, tm+1 ; ·)− u(·, tm ; ·)

∆t

∣∣∣∣
∣∣∣∣
H2(D)⊗L2(Γ)

)
. (47)

We have
∣∣∣∣
∣∣∣∣
u(·, tm+1 ; ·)− u(·, tm ; ·)

∆t

∣∣∣∣
∣∣∣∣
H1(D)⊗Hk(Γ)

=
1

∆t

∣∣∣∣
∣∣∣∣
∫ tm+1

tm

∂u

∂t
(·, s ; ·)ds

∣∣∣∣
∣∣∣∣
H1(D)⊗Hk(Γ)

=
1

∆t
||w||H1(D)⊗Hk(Γ),

and

||w||2H1(D)⊗Hk(Γ) =
∑

0≤|β|≤k

∫

Γ

||Dβ
ξ w(· ;ξ)||2H1(D)ρ(ξ)dξ,

whereDβ
ξ is given by (2). Applying Minkowsky and Cauchy-Schwarz’s inequalities, we get

||Dβ
ξ w(· ; ξ)||H1(D) ≤

√
∆t

(∫ tm+1

tm

∣∣∣∣
∣∣∣∣Dβ

ξ

∂u

∂t
(·, s ; ·)

∣∣∣∣
∣∣∣∣
2

H1(D)

ds

)1/2

,

which yields

∣∣∣∣
∣∣∣∣
u(·, tm+1 ; ·)− u(·, tm ; ·)

∆t

∣∣∣∣
∣∣∣∣
H1(D)⊗Hk(Γ)

≤ 1√
∆t


 ∑

0≤|β|≤k

∫

Γ

∫ tm+1

tm

∣∣∣∣
∣∣∣∣Dβ

ξ

∂u

∂t
(·, s ; ·)

∣∣∣∣
∣∣∣∣
2

H1(D)

dsρ(ξ)dξ




1/2

=
1√
∆t

βm(u). (48)
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Similarly, we get the following inequality

∣∣∣∣
∣∣∣∣
u(·, tm+1 ; ·)− u(·, tm ; ·)

∆t

∣∣∣∣
∣∣∣∣
H2(D)⊗L2(Γ)

≤ 1√
∆t

(∫

Γ

∫ tm+1

tm

∣∣∣∣
∣∣∣∣
∂u

∂t
(·, s ; ·)

∣∣∣∣
∣∣∣∣
2

H2(D)

dsρ(ξ)dξ

)1/2

=
1√
∆t

γm(u). (49)

From (47)–(49), it follows that

(II) ≤ 1√
∆t

αc

αe

(
C(M)βm(u) p−k

ξ + C∗ γm(u)h
)
. (50)

To complete the estimation in (44), we invoke the Galerkin orthogonality condition related to the initial value, which
gives

(u0
h,pξ

− u0, vh,pξ
)L2(D)⊗L2(Γ), ∀vh,pξ

∈ Vh ⊗ Spξ . (51)

Noting thatu0
h,pξ

− u0 = −(η0
h,pξ

+ ξ0
h,pξ

), and takingvh,pξ
= ξ0

h,pξ
in (51), we get

||ξ0
h,pξ

||L2(D)⊗L2(Γ) ≤ ||η0
h,pξ

||L2(D)⊗L2(Γ) ≤
αc

αe

(
C(M) p−k

ξ ||u0||H1(D)⊗Hk(Γ) + C∗ h ||u0||H2(D)⊗L2(Γ)

)
. (52)

Combining (41), (42), (44), (45), (46), (50), (52) and reordering terms, we have

max
m=1,2,...Nt

||em
h,pξ

||L2(D)⊗L2(Γ) ≤
C∗αc

αe
h

[
max

m=1,2,...,Nt

||u(·, tm , ·)||H2(D)⊗L2(Γ) + ||u0||H2(D)⊗L2(Γ)

+
2√
αe

(Nt−1∑
m=0

(γm(u))2
)1/2]

+
√

2
αe

∆t

(Nt−1∑
m=0

(αm(u))2
)1/2

+
C(M)αc

αe
p−k

ξ

[
max

m=1,2,...,Nt

||u(·, tm , ·)||H1(D)⊗Hk(Γ) + ||u0||H1(D)⊗Hk(Γ)

+
2√
αe

(Nt−1∑
m=0

(βm(u))2
)1/2]

.

In the preceding inequality, the upper bound still depends on∆t through the summations overNt terms,Nt = T/∆t.
To proceed further and obtain an upper bound independent of∆t, we use the following relation:

Nt−1∑
m=0

(γm(u))2 =
Nt−1∑
m=0

∫

Γ

∫ tm+1

tm

∣∣∣∣
∣∣∣∣
∂u

∂t
(·, s ; ·)

∣∣∣∣
∣∣∣∣
2

H2(D)

ds ρ(ξ)dξ

=
∫ T

0

∣∣∣∣
∣∣∣∣
∂u

∂t
(·, s ; ·)

∣∣∣∣
∣∣∣∣
2

H2(D)⊗L2(Γ)

ds = (K1(u, T ))2,

and similarly

Nt−1∑
m=0

(αm(u))2 =
∫ T

0

∣∣∣∣
∣∣∣∣
∂2u

∂t2
(·, s ; ·)

∣∣∣∣
∣∣∣∣
2

L2(D)⊗L2(Γ)

ds = (K2(u, T ))2,

Nt−1∑
m=0

(βm(u))2 =
∫ T

0

∣∣∣∣
∣∣∣∣
∂u

∂t
(·, s ; ·)

∣∣∣∣
∣∣∣∣
2

H1(D)⊗Hk(Γ)

ds = (K3(u, T ))2.
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The assumption that the source termf and its temporal derivatives are smooth enough and that the initial valueu0

belongs at least toH2(D) ⊗ Hk(Γ) ensures that||u0||H2(D)⊗L2(Γ) and ||u0||H1(D)⊗Hk(Γ) are finite quantities and
that∂u/∂t ∈ L2(0, T ; H2(D) ⊗Hk(Γ)) and∂2u/∂t2 ∈ L2(0, T ; L2(D) ⊗ L2(Γ)). This means that the constants
K1, K2, andK3 are well defined. This leads to the final a priori error estimate (36) and concludes the proof.

Theorem 4. Under the same assumptions as in Theorem 3, assume in addition that the dual solution of the steady-state
model satisfies the regularity conditions (27). Then the following a priori error estimate holds:

max
m=1,...,Nt

||u(·, tm ; ·)− um
h,pξ

||L2(D)⊗L2(Γ) ≤ C1 h2 + C2 ∆t + C3 p−2k
ξ (53)

with

C1 =
α2

c

αe

(
B1 max

m=1,...,Nt

||u(·, tm ; ·)||H1(D)⊗Hk(Γ) + B2 max
m=1,...,Nt

||u(·, tm ; ·)||H2(D)⊗L2(Γ)

+ B1 ||u0||H1(D)⊗Hk(Γ) + B2 ||u0||H2(D)⊗L2(Γ) + 2
√

2
αe

(
B1K3(u, T ) + B2K1(u, T )

))
,

C2 =
√

2
αe

K2(u, T ),

C3 =
α2

c

αe

(
A1 max

m=1,...,Nt

||u(·, tm ; ·)||H1(D)⊗Hk(Γ) + A2 max
m=1,...,Nt

||u(·, tm ; ·)||H2(D)⊗L2(Γ)

+ A1 ||u0||H1(D)⊗Hk(Γ) + A2 ||u0||H2(D)⊗L2(Γ) + 2
√

2
αe

(
A1K3(u, T ) + A2K1(u, T )

))
,

where constantsK1(u, T ), K2(u, T ), K3(u, T ) are defined by (37)–(39) and constantsA1, A2, B1, B2 are given in
Theorem 2.

Proof. This result is obtained by following the proof of Theorem 3 and by using the elliptic error estimate satisfied
by the solution of the steady-state model given by Theorem 2.

Corollary 2. Under the same assumptions as in Theorem 3 and using the same notations, the a priori error estimate
as a function ofM andNξ can be written as

max
m=1,...,Nt

||u(·, tm ; ·)− um
h,pξ

||L2(D)⊗L2(Γ) ≤ C1 h + C2 ∆t + C3

(
1 + log(M)

log(Nξ)

)k

. (54)

Theorem 5. Under the same assumptions as in Theorem 3 with a quasi-uniform spatial discretization, consider the
θ-scheme (29) withθ ∈ [0, 1/2[. Under the following restrictions on the time-step,

∆t

h2
≤ 2αe(C2

D + 1)− 4ε2C2
D

(C2
D + 1)(1− 2θ)α2

c(C∗i )2(1 + ε)
, 0 < ε ≤

(
αe(1 + C2

D)
2C2

D

)1/2

, (55)

whereC∗i is defined by (C.4), the a priori error estimates (36) or (54) hold with

C1 =
C∗αc

αe

(
max

m=1,...,Nt

||u(·, tm ; ·)||H2(D)⊗L2(Γ) + ||u0||H2(D)⊗L2(Γ) + 2
√

cε K1(u, T )
)

,

C2 =
√

2cε K2(u, T ),

C3 =
C(M)αc

αe

(
max

m=1,...,Nt

||u(·, tm ; ·)||H1(D)⊗Hk(Γ) + ||u0||H1(D)⊗Hk(Γ) + 2
√

cε K3(u, T )
)

.

The constantcε is given bycε = (1 − 2θ)(1 + 1/ε)∆t + 1/4ε2 andK1(u, T ), K2(u, T ), K3(u, T ) are defined by
(37)–(39).
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Remark4.1. When considering spatial domains with smooth boundary∂D, faster convergence rates can be obtained
using higher-order FE approximations. ConsiderS = Hk(Γ), V = H1

0 (D) ∩H l+1(D) with l ≥ 1 and letVh be the
subspace spanned by piecewise polynomials of degree at mostl. Then it holds:

||ηm
h,pξ

||L2(D)⊗L2(Γ) ≤
αc

αe

(
C(M) p−k

ξ ||u(·, tm ; ·)||H1(D)⊗Hk(Γ) + C̃∗ hl ||u(·, tm ; ·)||Hl+1(D)⊗L2(Γ)

)
,

whereC̃∗ is a constant independent ofh. As a consequence, the error estimate (36) becomes

max
m=1,...,Nt

||u(·, tm ; ·)− um
h,pξ

||L2(D)⊗L2(Γ) ≤ C1 hl + C2 ∆t + C3 p−k
ξ , (56)

whereC1 is now defined as

C1 =
C̃∗αc

αe

(
max

m=1,...,Nt

||u(·, tm ; ·)||Hl+1(D)⊗L2(Γ) + ||u0||Hl+1(D)⊗L2(Γ) +
2√
αe

K̃1(u, T )
)

,

with

K̃1(u, T ) =

(∫ T

0

∣∣∣∣
∣∣∣∣
∂u

∂t
(·, s ; ·)

∣∣∣∣
∣∣∣∣
2

Hl+1(D)⊗L2(Γ)

ds

)1/2

Remark4.2. The error estimates (36), (54), or (56) hold for second-order parabolic SPDEs defined in Appendix A
(see Eqs. (A.1) and (A.2)) since the bilinear form is continuous and elliptic with respect to the norm|| · ||H1(D)⊗L2(Γ).

5. APPLICATION TO STOCHASTIC DIFFUSION MODELS

In this section, we shall apply the general error estimates derived earlier to the steady-state and time-dependent
stochastic diffusion equations. We shall show how thea priori error estimates derived earlier can be sharpened for
both cases. Finally, we shall consider a one-dimensional parabolic SPDE model to gain insights into the relationships
between the time-step restriction and the input random field parameters.

5.1 Stochastic Diffusion Model

In this section we consider the following stochastic diffusion model [10, 13]

∂u(x, t ; ξ)
∂t

− div
(
κ(x ; ξ)∇u(x, t ; ξ)

)
= f(x, t ;ξ) a.s. inD × [0, T ]× Ω,

u(x, t ;ξ) = g(x) a.s. on∂D × [0, T ]× Ω,

u(x, 0 ; ξ) = u0(x ;ξ) a.s. onD × Ω,

(57)

whereκ is a random diffusivity field which is strictly positive and bounded, i.e.,

0 < k1 ≤ κ(x ; ξ) ≤ k2 a.s. inD × Ω. (58)

The source termf is assumed to satisfy

∫

Γ

∫

D

∫ T

0

|f(x, t ;ξ)|2ρ(ξ) dξdxdt < +∞, (59)

which implies
∫
D

∫ T

0
|f(x, t ; ξ)|2 dxdt < +∞ a.s. inΩ. We also assume that the random fieldκ is measurable with

respect to theσ-algebraB(D)⊗ F whereB(D) denotes theσ-algebra associated withD, and that the source termf
is measurable with respect to theσ-algebraB(D × [0, T ]) ⊗ F . Models such as (57) are typically used for chemical
transport and fluid flow in heterogeneous random media, heat transfer, oil reservoir, and water resources modeling.
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The steady-state version of (57) has been extensively studied in the literature; see, for example [7, 11, 14, 15]. The
existence and uniqueness of the solution of (57) inL2(0, T ;H1

0 (D))⊗ L2(Γ) is guaranteed by the assumptions (58)
and (59); see [13, 34]. The random diffusivity can be discretized using a Karhunen-Loève expansion scheme [28] and
written in terms of a finite number of random variables as

κ(x ; ξ) = κ0(x) +
M∑

i=1

ξiκ
i(x), (60)

whereξi are uncorrelated uniform random variables (in[−1, 1]) and(κi)i≥1 forms an orthogonal basis ofL2(D). We
next consider the following assumption [11] satisfied by the functionsκ0 andκi:

∑

i≥1

||κi||L∞(D) ≤
λ

1 + λ
κ̄0

min (61)

with κ̄0
min = min

x∈D̄
κ0(x) > 0 andλ > 0. Note that assumption (61) implies assumption (58) with the lower bound

k1 = κ̄0
min/(1 + λ), and ensures that the series

∑
i≥1 ξiκ

i(x) is absolutely and uniformly convergent onD ×Ω (see
[11] for more details).

5.2 A Priori Error Estimates: Elliptic Case

In this section we consider the steady-state version of (57). We assume that (58) and (61) hold and that the source
term satisfies ∫

Γ

∫

D
|f(x ; ξ)|2ρ(ξ) dξdx < +∞. (62)

Note that the assumption (62) impliessup
ξ∈Γ

||f(· ; ξ)||L2(D) < +∞. The weak formulation is given by

Findu ∈ H1
0 (D)⊗ L2(Γ) such that:

A(u, v) :=
∫

Γ

∫

D
κ(x ;ξ)∇u(x ; ξ)∇v(x ; ξ)ρ(ξ) dξdx

=
∫

Γ

∫

D
f(x ; ξ)v(x ; ξ)ρ(ξ) dξdx, ∀v ∈ H1

0 (D)⊗ L2(Γ). (63)

As an illustration of Theorem 1 we shall provide an a priori error estimate for||u− uh,pξ
||H1(D)⊗L2(Γ).

Theorem 6. Consider a random source termf ∈ L2(D)⊗Hk(Γ). Let u be the solution of (63) withu ∈ (H1
0 (D) ∩

H2(D))⊗Hk(Γ) anduh,pξ
∈ Vh ⊗ Spξ denote the FE approximate solution. Then

||u− uh,pξ
||H1(D)⊗L2(Γ) ≤

αc

αe

(
C(M)Drp

−k
ξ + C∗Crh||f ||L2(D)⊗L2(Γ)

)
, (64)

where the constantCr depends onD and
∣∣∣∣Dα

x κ
∣∣∣∣

L∞(D×Γ)
, |α| ≤ 1, while the constantDr depends on the Poincaré’s

constantCD, k1, (bj)j=1,...M with bj = (||κj ||L∞(D))/k1, and on
∣∣∣∣Dβ

ξ f
∣∣∣∣

L2(D)⊗L∞(Γ)
, |β| ≤ k.

Proof. First, we show thatu ∈ H1(D)⊗Hk(Γ). Following the ideas of Cohen et al. (see [11], Theorem 4.1 therein),
it can be shown that

sup
ξ∈Γ

∣∣∣∣Dβ
ξ u(· ; ξ)

∣∣∣∣
H1

0 (D)
≤ Eβ, ∀β, (65)

where the constantEβ is defined as

Eβ = C0,β + C0,0|β|!bβ +
∑

j,βj 6=0

βjbjC0,β−ej + · · ·
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with C0,β = (CD/k1) supξ∈Γ

∣∣∣∣Dβ
ξ f(· ; ξ)

∣∣∣∣
L2(D)

, bβ =
∏M

j=1 b
βj

j , and whereej denotes the Kronecker sequence

with the value1 at thej-th position and0 elsewhere. Sincef ∈ L2(D)⊗Hk(Γ), Eβ < +∞ for every|β| ≤ k, which
means thatu ∈ H1

0 (D) ⊗Hk(Γ) or equivalentlyu ∈ H1(D) ⊗Hk(Γ) from Poincaŕe’s inequality. Then, from (65)
we have

||u||2H1(D)⊗Hk(Γ) =
∑

0≤|β|≤k

∫

Γ

||Dβ
ξ u(· ; ξ)||2H1(D)ρ(ξ)dξ ≤ (1 + C2

D)
∑

0≤|β|≤k

∫

Γ

||Dβ
ξ u(· ; ξ)||2H1

0 (D)ρ(ξ)dξ

≤ (1 + C2
D)

∑

0≤|β|≤k

E2
β = (Dr)2. (66)

Next, using the following regularity estimate from the analysis of Babus̆ka et al. [7],

||u(· ;ξ)||H2(D) ≤ Cr||f(· ;ξ)||L2(D), ∀ξ ∈ Γ,

we have
||u||H2(D)⊗L2(Γ) ≤ Cr||f ||L2(D)⊗L2(Γ). (67)

Combining (66), (67), and the estimate (20), we obtain the inequality (64).

Remark5.1. Estimatingp−k
ξ in (64) as in Corollary 1, it can be seen that the stochastic discretization error tends

to zero whenM → +∞ and pξ → +∞. This trend is what one would expect when using KL expansions for
discretization of the SPDE coefficients. However, to proceed further with the analysis derived in the present paper
when considering SPDEs with KL expansions, the error arising from random field discretization would need to be
taken into account (as done, for example, in [7]).

Remark5.2. For spatial domains with smooth boundary∂D, faster convergence rates can be obtained using higher-
order FE basis functions. When considering FE piecewise polynomials of degree at mostl, the error corresponding to
the steady-state stochastic diffusion model scales asO(p−k

ξ + hl) in Theorem 6.

5.3 Remarks on Time-Step Restriction

We discuss here the time-step restriction (55) when considering theθ-scheme (29) withθ ∈ [0, 1/2[ for solving the
time-dependent diffusion model (57). First, from (58) and using Poincaré’s inequality, we have

k1

1 + C2
D
||u||2H1(D)⊗L2(Γ) ≤ A(u, u) ≤ k2||u||2H1(D)⊗L2(Γ),

meaning thatαe = k1/(1 + C2
D) and αc = k2. To proceed further, we shall expressk1 and k2 in terms of the

random field parameters. To illustrate, we considerD = [0, 1] ⊂ R with the covariance function defined asC(x, y) =
σ2 exp (−|x− y|/Lc), whereσ andLc denote the standard deviation and the correlation length, respectively. The
functions(κi)i≥1 in (60) are given byκi(x) =

√
λic

i(x), where{λi, c
i} are the eigenvalues and eigenfunctions of

the Fredholm equation ∫ 1

0

C(x, y)ci(y)dy = λic
i(x). (68)

From the definition ofC, the analytical solution of (68) is explicitly given by [1, 2]

ci(x) =





cos(ωi(x− 0.5))√
0.5 + sin(ωi)/2ωi

i even,

sin(ωi(x− 0.5))√
0.5− sin(ωi)/2ωi

i odd,
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λi = σ2 2Lc

1 + (ωiLc)2
, (69)

whereωi are positive roots of(1 − Lcω tan(ω/2))(Lcω + tan(ω/2)). It is to be noted that the decay rate ofλi

increases asLc becomes smaller (see [1]). Sinceci are bounded functions,ξi ∈ [−1, 1] and from (60), (69), it follows
that

αc = k2 = sup
(x,ξ)∈D×Γ

κ(x ;ξ) = ||κ0||L∞(D) + σ
√

2Lc

M∑

i=1

||ci||L∞(D)√
1 + (ωiLc)2

. (70)

We are now in a position to discuss the influence of the random field parameters (Lc andσ) on the allowable time-step
∆t for the case whenθ ∈ [0, 1/2[. From (70), it can be seen thatαc increases whenσ becomes larger. As a result of
this, the allowable interval for the time-step∆t shrinks [see Eq. (55)]. Conversely,αc decreases whenLc takes larger
values [see Eq. (70)]. Therefore the upper bound (55) on the time-step is less restrictive, meaning that larger values
of ∆t can be considered. The latter statement is coherent with the fact that whenLc goes to+∞, the random fieldκ
tends to the averaged deterministic fieldκ0, meaning that∆t is not restricted by the random field parameters anymore.

6. A NOTE ON A PRIORI ERROR ESTIMATES FOR FUNCTIONAL APPROXIMATIONS

6.1 Preliminaries

In many problems of practical interest, one is concerned by evaluating a quantity of interest given by a functional
J(u), whereu is the solution of a SPDE model. A question which arises naturally concerns the estimation of the error
|J(u)−J(uh,pξ

)|, whereuh,pξ
is a stochastic PC Galerkin approximation ofu. In this context, there exists a wide body

of literature on a posteriori error estimation for deterministic PDE models. For example, computable a posteriori error
estimates for FE approximations of deterministic elliptic PDEs are derived in [35, 36]. Pierce and Giles [29] presented
an approach for improved approximation of functionals depending on linear or nonlinear deterministic PDE solutions
using adjoint methods. A detailed overview of adjoint methods for a posteriori error analysis of FE approximations
of deterministic functionals is provided in [37]. A posteriori error estimates for stochastic FE methods based on an
adjoint formulation and mesh refinement procedures are studied in [38]. Computable a posteriori error estimates based
on a stochastic Galerkin projection scheme for the adjoint problem are provided in [30].

In this section, we shall consider adjoint-based corrections to functionals computed using the approach originally
developed by Pierce and Giles [29] and extended to SPDEs by Butler et al. [30]. Our main objective is to demonstrate
that this recovery scheme issuperconvergentbased on the a priori error estimates derived in the earlier sections for
elliptic SPDEs. Our analysis follows the work of Giles and Süli [37] dealing with deterministic PDEs (see Theo-
rem 7.1 therein). For clarity of exposition, let us first recall theprimal anddual SPDE (strong) formulations which
are, respectively, given by

Lξu(x ; ξ) = f(x ; ξ) a.s. inD × Ω, (71)

Lξw(x ; ξ) = g(x ; ξ) a.s. inD × Ω, (72)

whereLξ will be assumed to be a randomly parametrized second-order self-adjoint differential operator andf, g ∈
L2(D) ⊗ L2(Γ) are given random source terms. For the simplicity of presentation, (71) and (72) are supplemented
with homogeneous Dirichlet boundary conditions. The weak form corresponding to the primal problem is written as
Findu ∈ V ⊗ S such that:

A(u, v) = (f, v)L2(D)⊗L2(Γ), ∀v ∈ V ⊗ S, (73)

with V = H1
0 (D)∩H2(D) andS = Hk(Γ). As assumed earlier, the bilinear formA is αc-continuous andαe-elliptic

with respect to the norm|| · ||H1(D)⊗L2(Γ). The weak form associated with the dual problem is given by

Findw ∈ V ⊗ S̃ such that:
A(v, w) = (g, v)L2(D)⊗L2(Γ), ∀v ∈ V ⊗ S̃, (74)

where S̃ = H l(Γ). Strictly speaking, the Sobolev indexl can be different fromk, depending on the stochastic
regularity of the source termg.
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We now focus on the definition of the functionalJ(u) which clearly depends on the application under considera-
tion. In the present analysis, we shall consider stochastic functionals of the form

J(u) = (g(· ;ξ), u(· ; ξ))L2(D), (75)

whereu is the solution of the SPDE model (71) andg is the source term of (72). Stochastic pointwise functionals have
been studied in [39] when considering linear random algebraic equations, for which an error analysis with respect to
the norm|| · ||L∞(Γ) is provided. However, the convergence result derived therein is obtained byassuminga particular
form of primal/dual approximation errors in theL∞ norm.

In the present work, our aim is to leverage the a priori error estimates derived earlier for elliptic SPDEs. To begin
with, consider error analysis for the approximation of (75) with respect to the norm|| · ||L2(Γ). Using the Cauchy-
Schwarz inequality, it can be shown that

||J(u)− J(uh,pξ
)||L2(Γ) ≤ sup

ξ∈Γ
||g(· ; ξ)||L2(D)||u− uh,pξ

||L2(D)⊗L2(Γ).

The a priori error estimates (given by Theorem 1 or Theorem 2) can be used in the preceding inequality to obtain
convergence rates for functionals approximated using the solution of the primal SPDE. However, the a priori error
estimates derived earlier for elliptic SPDEs cannot be used further in this framework when considering improved
functionals based on the solution of an adjoint/dual problem. In this approach, instead of consideringJ(uh,pξ

) as an
approximation of the exact functionalJ(u), improved functionals are defined by means of an adjoint correction term;
see Section 6.3. It is to be noted that similar issues also occur for pointwise functionals depending on a deterministic
PDE solution. As discussed in Giles and Süli [37], pointwise functionals cannot be accommodated within the frame-
work of Hilbertian error analysis. To circumvent this technical problem, one might carry out the error analysis in a
reflexive Banach setting, or, alternatively, define another type of functional based on a local average overΓ, following
the ideas in [37]. Since our a priori error estimates for elliptic SPDEs are derived in an Hilbertian framework, we
choose the second option to proceed further. In other words, instead of directly working with the stochastic functional
(75), we shall consider a linear output functional given by a local average of (75) in a ball defined overΓ, i.e.,

J(u) =
1

|B(ξ̂, r)|
(g, u)L2(D)⊗L2(B(ξ̂,r)), (76)

whereB(ξ̂, r) ⊂ Γ denotes a ball of radiusr centered at a given random vectorξ̂, with |B(ξ̂, r)| =
∫
B(ξ̂,r)

ρ(ξ)dξ.
In the following sections, we shall provide error estimates for primal and adjoint-based corrected approximations of
the preceding functional.

6.2 A Priori Error Estimates for Primal Solution Based Functional Approximations

We shall first provide a priori error estimates for the approximationJ(uh,pξ
) based on the solution of the primal

problem before examining the error associated with the adjoint-based corrected approximation. In what follows, the
approximation space for the primal problem is given byVh ⊗ Spξ , whereh is the spatial discretization mesh spacing
parameter andpξ is the PC approximation order. By definition ofJ and using the Cauchy-Schwarz inequality, we
have

|J(u)− J(uh,pξ
)| ≤ 1

|B(ξ̂, r)|
||g||L2(D)⊗L2(B(ξ̂,r))||u− uh,pξ

||L2(D)⊗L2(B(ξ̂,r))

≤ 1

|B(ξ̂, r)|
||g||L2(D)⊗L2(Γ)||u− uh,pξ

||L2(D)⊗L2(Γ). (77)

Applying Theorem 1 for estimating the primal error approximation, we get the following error estimate:
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|J(u)− J(uh,pξ
)| ≤ αc

αe

1

|B(ξ̂, r)|
||g||L2(D)⊗L2(Γ)

×
(

C(M) p−k
ξ ||u||H1(D)⊗Hk(Γ) + C∗h ||u||H2(D)⊗L2(Γ)

)
. (78)

Under additional regularity assumptions for the dual problem (72), i.e.,

||w||H2(D)⊗L2(Γ) ≤ Cr||g||L2(D)⊗L2(Γ), ||w||H1(D)⊗Hl(Γ) ≤ C̃r||g||L2(D)⊗L2(Γ), (79)

a sharper functional error estimate can be obtained using a a slightly different version of Theorem 2 for estimating
||u− uh,pξ

||L2(D)⊗L2(Γ) given below:

||u− uh,pξ
||L2(D)⊗L2(Γ) ≤

α2
c

αe

(
C1(M) p−s

ξ + C2(M)h2

)
,

wheres = min{k + l, 2k, 2l} andC1, C2 are constants independent ofh andpξ given by

C1(M) =
(

C(M)2C̃r +
C(M)C∗Cr

2

)
||u||H1(D)⊗Hk(Γ) +

C(M)C∗C̃r

2
||u||H2(D)⊗L2(Γ),

C2(M) =
C(M)C∗Cr

2
||u||H1(D)⊗Hk(Γ) +

(
(C∗)2Cr +

C(M)C∗C̃r

2

)
||u||H2(D)⊗L2(Γ).

Hence we get the following a priori error estimate:

|J(u)− J(uh,pξ
)| ≤ α2

c

αe

1

|B(ξ̂, r)|
||g||L2(D)⊗L2(Γ)

(
C1(M) p−s

ξ + C2(M) h2

)
. (80)

It is worth noting that superconvergence of functional approximations automatically holds when considering determin-
istic Galerkin FE methods for computing the primal and dual solutions (see [29] where deterministic linear functionals
depending on the solution of deterministic PDE models are studied). In the present analysis, where linear output func-
tionals that depend on the solution of SPDE models are considered, we also obtain (under regularity assumptions for
the adjoint problem) a superconvergence result [see Eq. (80)], as expected when using Galerkin projection schemes.

6.3 A Priori Error Estimates for Adjoint-Based Corrected Functional Approximations

We first introduce the finite-dimensional approximation subspaces that are needed in our derivation, i.e.,Vh⊗Spξ for
the primal problem (71) andVH ⊗Sqξ for the dual problem (72). At this stage, there is no restriction on the definition
of the mesh-sizes (h,H) and the PC orders (pξ, qξ) used for solving the primal and dual problems. The Galerkin
approximation of the dual formulation,

A(vH,qξ
, wH,qξ

) = (g, vH,qξ
)L2(D)⊗L2(Γ), ∀vH,qξ

∈ VH ⊗ Sqξ , (81)

whereVH andSqξ are given by (11) and (12), respectively, can be formally written in an operator form as

LξwH,qξ
= gH,qξ

= g + zH,qξ
, (82)

wherezH,qξ
belongs to the orthogonal complement ofVH ⊗ Sqξ . We are now in a position to write the following

splitting:

J(u) =
1

|B(ξ̂, r)|

(
(g, uh,pξ

)L2(D)⊗L2(B(ξ̂,r)) − (gH,qξ
, uh,pξ

− u)L2(D)⊗L2(B(ξ̂,r))

+ (gH,qξ
− g, uh,pξ

− u)L2(D)⊗L2(B(ξ̂,r))

)
. (83)
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Using the approximate dual problem (82), the second term in the previous splitting is written as

(gH,qξ
, u− uh,pξ

)L2(D)⊗L2(B(ξ̂,r)) =
∫

B(ξ̂,r)

(LξwH,qξ
, u− uh,pξ

)
L2(D)

ρ(ξ)dξ

=
∫

B(ξ̂,r)

(
wH,qξ

,Lξ(u− uh,pξ
)
)
L2(D)

ρ(ξ)dξ

= (wH,qξ
, f − Lξuh,pξ

)L2(D)⊗L2(B(ξ̂,r)).

This suggests the definition of the improved functional,

Jimp(uh,pξ
, wH,qξ

) = J(upξ
) +

1

|B(ξ̂, r)|
(wH,qξ

, f − Lξuh,pξ
)L2(D)⊗L2(B(ξ̂,r)), (84)

where the adjoint correction term1/|B(ξ̂, r)|(wH,qξ
, f−Lξuh,pξ

)L2(D)⊗L2(B(ξ̂,r)) is a computable quantity depend-
ing on the dual solution and the primal residual. The adjoint correction can be interpreted as a computable a posteriori
error estimate [30] or as a correction term for improving the primal solution-based approximation [39].

We shall now provide an a priori error estimate for the improved adjoint corrected functional given by (84).

Theorem 7. Let J andJimp denote the exact and improved functionals given by (76) and (84), respectively. Then it
holds

|J(u)− Jimp(uh,pξ
, wH,qξ

)| ≤ 1

|B(ξ̂, r)|
α3

c

α2
e

(
C(M) p−k

ξ ||u||H1(D)⊗Hk(Γ) + C∗h ||u||H2(D)⊗L2(Γ)

)

×
(

C(M) q−l
ξ ||w||H1(D)⊗Hl(Γ) + C∗H ||w||H2(D)⊗L2(Γ)

)
, (85)

whereuh,pξ
∈ Vh ⊗ Spξ andwH,qξ

∈ VH ⊗ Sqξ . The constantsC andC∗ are independent ofpξ, qξ, h, andH.

Proof. By construction, we have

J(u) = Jimp(uh,pξ
, wH,qξ

) +
1

|B(ξ̂, r)|
(gH,qξ

− g, uh,pξ
− u)L2(D)⊗L2(B(ξ̂,r))

= Jimp(uh,pξ
, wH,qξ

) +
1

|B(ξ̂, r)|
(wH,qξ

− w,Lξ(uh,pξ
− u))L2(D)⊗L2(B(ξ̂,r)), (86)

using the self-adjointness ofLξ. For the sake of illustration, consider the case whenLξ is given by a randomly
parametrized second-order differential operator defined by (A.1). Applying integration by parts overD, we get

(wH,qξ
− w,Lξ(uh,pξ

− u))L2(D)⊗L2(B(ξ̂,r)) =
d∑

i,j=1

(
aij

∂

∂xj
(uh,pξ

− u),
∂

∂xi
(wH,qξ

− w)
)

L2(D)⊗L2(B(ξ̂,r))

+
d∑

i=1

(
bi

∂

∂xi
(uh,pξ

− u), wH,qξ
− w

)

L2(D)⊗L2(B(ξ̂,r))

+ (c(uh,pξ
− u), wH,qξ

− w)L2(D)⊗L2(B(ξ̂,r)).

Using the same arguments as in Appendix A, we obtain
∣∣(wH,qξ

− w,Lξ(uh,pξ
− u))L2(D)⊗L2(B(ξ̂,r))

∣∣

≤ αc ||u− uh,pξ
||H1

0 (D)⊗L2(B(ξ̂,r)) ||w − wH,qξ
||H1

0 (D)⊗L2(B(ξ̂,r))

≤ αc ||u− uh,pξ
||H1(D)⊗L2(Γ) ||w − wH,qξ

||H1(D)⊗L2(Γ) (87)
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whereαc is the continuity constant of the bilinear formA,given here byαc = λmax
a + max

i=1,...d
|b̄i|
√

dCD +c̄ C2
D. Using

(86) and applying Theorem 1 to estimate||u − uh,pξ
||H1(D)⊗L2(Γ) and||w − wH,qξ

||H1(D)⊗L2(Γ) in the right-hand
side of (87), we get the final result.

Remark6.1. In the limiting case whenB(ξ̂, r) = Γ, we have|B(ξ̂, r)| = 1 andJ is given byJ(u) = (g, u)L2(D)⊗L2(Γ).
From the splitting

J(u) = (g, uh,pξ
)L2(D)⊗L2(Γ) − (gH,qξ

, uh,pξ
− u)L2(D)⊗L2(Γ) + (gH,qξ

− g, uh,pξ
− u)L2(D)⊗L2(Γ),

it can be seen that the adjoint correction(gH,qξ
, u − uh,pξ

)L2(D)⊗L2(Γ) will be nonzero only if we consider refined
approximate subspaces for solving the dual problem, i.e.,H < h and/orqξ > pξ. Indeed, if we considerH ≥ h and
qξ ≤ pξ so thatVH ⊗ Sqξ ⊂ Vh ⊗ Spξ , the adjoint correction vanishes due to Galerkin orthogonality—this can be
shown as follows:

(gh,pξ
, u− uh,pξ

)L2(D)⊗L2(Γ) = (Lξwh,pξ
, u− uh,pξ

)L2(D)⊗L2(Γ) = A(u− uh,pξ
, wh,pξ

) = 0.

In summary, an adjoint-based correction is possible in the limiting case only if refined approximation subspaces are
used for solving the dual problem. From a computational point of view, this strategy will be inefficient since the
algorithmic complexity of the dual and the primal problems tend to be equivalent in practical implementations. For
the case when the output functional is given by (76), the Galerkin orthogonality condition does not apply since a local
integral over a ball in the random space is used for the adjoint correction term. Hence, the approach based on the
improved functional (84) is computationally efficient for computing functionals of the form (76) since a coarse mesh
size (H > h) and a low PC order (qξ < pξ) can be used for solving the dual problem.

7. CONCLUDING REMARKS

In this paper, we present some a priori error estimates for FE approximation of a class of elliptic and parabolic linear
SPDEs in the setting of finite-dimensional noise. In the elliptic case, we derive a priori error estimates that hold
under some spatial and stochastic regularity assumptions for the analytical SPDE solution. We also derive a sharper
estimate for the convergence rate under additional elliptic regularity assumptions. For the case of parabolic SPDE
models, we present a detailed stability analysis of a class of weighted time-stepping schemes. This stability analysis
is subsequently used to account for the effect of the temporal discretization error on the convergence rate of stochastic
finite element approximations. The results obtained are applied to the steady-state and time-dependent stochastic
diffusion equations.

Finally, we consider primal and adjoint-based corrected approximations of linear stochastic functionals that de-
pend on the solution of elliptic SPDEs. We focus on a special case involving local averages of stochastic functionals to
gain insights into the convergence rate. The present analysis shows that for stochastic finite element methods based on
Galerkin projection, the primal and adjoint-based correction procedures provide superconvergent estimates of a class
of linear functionals that depend on the solution of elliptic SPDE models, provided appropriate regularity conditions
are satisfied.

The present analysis was limited to Legendre PC expansions and further work is required to extend the analysis
to generalized PC expansions (e.g., Hermite, Laguerre, and Jacobi polynomials). Recently, Ernst et al. [40] provided
a theoretical analysis of conditions under which generalized PC expansions will converge to the correct limit. It is
necessary to extend this work further in order to derive rates of convergence for different types of PC expansions.
Numerical studies are also required to compare the theoretical error estimates obtained in the present analysis with
empirically obtained convergence rates. Another related topic which remains to be investigated further involves sta-
bility analysis of weighted temporal discretization schemes when the SPDE solution is assumed to satisfy polydisc
analyticity assumptions in the complex plane.
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APPENDIX A. CONTINUITY AND COERCIVITY CONDITIONS FOR A CLASS OF SECOND-ORDER
SPDES

We consider a class of SPDE models (3) whenLξ is a second-order differential operator of the form

Lξ = −
d∑

i,j=1

∂

∂xi

(
aij(x ; ξ)

∂

∂xj

)
+

d∑

i=1

bi(x ; ξ)
∂

∂xi
+ c(x ; ξ), (A.1)
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with homogeneous boundary conditions

u(x ; ξ) = 0 a.s. on∂D × Ω, (A.2)

andf ∈ L2(D×Ω). We assume that the matrixa(x ; ξ) : D×Ω → Rd×d with entriesaij(x ; ξ) is symmetric positive
definite a.s. inD × Ω with its eigenvaluesλi(x ; ξ) such that

0 < λmin
a ≤ λi(x ; ξ) ≤ λmax

a < +∞ a.s. inD × Ω, i = 1, . . . , d.

In addition, let the functions(bi)i=1,...d andc in (A.1) satisfy

c(x ;ξ)− 1
2

d∑

i=1

∂

∂xi
bi(x ; ξ) ≥ 0 a.s. inD × Ω,

bi(x ; ξ) ≤ b̄i < +∞ a.s. inD × Ω, i = 1, . . . , d,

c(x ; ξ) ≤ c̄ < +∞ a.s. inD × Ω.

Then the stochastic weak formulation can be written as follows.
Findu ∈ H1

0 (D)⊗ L2(Γ) such that:

A(u, v) =
d∑

i,j=1

(
aij

∂u

∂xj
,

∂v

∂xi

)

L2(D)⊗L2(Γ)

+
d∑

i=1

(
bi

∂u

∂xi
, v

)

L2(D)⊗L2(Γ)

+ (cu, v)L2(D)⊗L2(Γ)

= (f, v)L2(D)⊗L2(Γ), ∀v ∈ H1
0 (D)⊗ L2(Γ).

Since we consider bounded spatial domains, the norms|| · ||H1(D) and || · ||H1
0 (D) are equivalent from Poincaré’s

inequality. Hence the continuity and coercivity ofA can be proved with respect to the norm|| · ||H1
0 (D)⊗L2(Γ). Since

the mappingu1,u2 ∈ (L2(D))d ⊗ L2(Γ) 7→ (au1,u2)L2(D)⊗L2(Γ) defines an inner product,1 we have

|(a∇u,∇v)L2(D)⊗L2(Γ)| ≤ λmax
a ||∇u||L2(D)⊗L2(Γ)||∇v||L2(D)⊗L2(Γ) = λmax

a ||u||H1
0 (D)⊗L2(Γ)||v||H1

0 (D)⊗L2(Γ).

For the second term, using the Cauchy-Schwarz inequality and noting thatD is bounded, we get

∣∣∣∣
d∑

i=1

(
bi

∂u

∂xi
, v

)

L2(D)⊗L2(Γ)

∣∣∣∣ ≤ max
i=1,...d

|b̄i|
d∑

i=1

∣∣∣∣
∣∣∣∣
∂u

∂xi

∣∣∣∣
∣∣∣∣
L2(D)⊗L2(Γ)

||v||L2(D)⊗L2(Γ)

≤ max
i=1,...d

|b̄i|
√

d

(
d∑

i=1

∣∣∣∣
∣∣∣∣
∂u

∂xi

∣∣∣∣
∣∣∣∣
2

L2(D)⊗L2(Γ)

)1/2

||v||L2(D)⊗L2(Γ)

≤ max
i=1,...d

|b̄i|
√

dCD ||u||H1
0 (D)⊗L2(Γ)||v||H1

0 (D)⊗L2(Γ),

whereCD denotes Poincaré’s constant which only depends on the spatial dimensiond and the diameter ofD. Applying
Poincaŕe’s inequality again for the third term inA, we obtain

|A(u, v)| ≤
(

λmax
a + max

i=1,...d
|b̄i|
√

dCD + c̄ C2
D

)
||u||H1

0 (D)⊗L2(Γ)||v||H1
0 (D)⊗L2(Γ).

1The vectorial inner product defined on(L2(D))d⊗L2(Γ) is given by(u1,u2)L2(D)⊗L2(Γ) =
∑d

i=1

(
(u1)i, (u2)i

)
L2(D)⊗L2(Γ)

.

For compactness, we use the notation(·, ·)L2(D)⊗L2(Γ) instead of(·, ·)(L2(D))d⊗L2(Γ) or similarly ||∇u||L2(D)⊗L2(Γ) instead of
||∇u||(L2(D))d⊗L2(Γ) in the paper.
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We focus now on proving the coercivity ofA. We write

A(u, u) = (a∇u,∇u)L2(D)⊗L2(Γ) +
d∑

i=1

(
bi

∂u

∂xi
, u

)

L2(D)⊗L2(Γ)

+ (cu, u)L2(D)⊗L2(Γ)

= (a∇u,∇u)L2(D)⊗L2(Γ) +
∫

Γ

∫

D

(
cu2 +

d∑

i=1

bi
1
2

∂u2

∂xi

)
dx ρ(ξ)dξ

= (a∇u,∇u)L2(D)⊗L2(Γ) +
∫

Γ

∫

D

(
c− 1

2

d∑

i=1

∂bi

∂xi

)
u2dx ρ(ξ)dξ

applying integration by parts to the second term within brackets. The coercivity condition (6) then holds since we have

(a∇u,∇u)L2(D)⊗L2(Γ) ≥ λmin
a ||u||2H1

0 (D)⊗L2(Γ)

andc− (1/2)
∑d

i=1(∂bi/∂xi) ≥ 0 a.s. inD × Ω. The boundedness condition (7) directly follows from

|l(v)| ≤ ||f ||L2(D)⊗L2(Γ)||v||L2(D)⊗L2(Γ) ≤ CD||f ||L2(D)⊗L2(Γ)||v||H1
0 (D)⊗L2(Γ).

The bilinear formA then satisfies the assumptions (5), (6), and (7) with respect to the norm|| · ||H1(D)⊗L2(Γ).

APPENDIX B. PROOF OF LEMMA 1

In this section we prove Lemma 1 by induction on the number of random variablesM . The proof follows [41] where
error estimates are given for Legendre polynomial approximations (such error estimates are stated in [42] without a
proof; see Theorem 3.1 therein). For the sake of clarity we considerV = L2(D), however, the proof can be easily
extended to general Sobolev spaces.

Let us start by considering the case whenM = 1. We assume thatu(x ; ·) ∈ Hk(Γ) with k = 2m (for brevity the
casek = 2m + 1 is not presented here as it is based on the same arguments). From

πpξ
(u) := vpξ

(x ; ξ) =
pξ∑

α=0

vα(x)Lα(ξ),

we have
||u− vpξ

||2L2(D)⊗L2(Γ) =
∑

α≥pξ+1

||vα||2L2(D)||Lα||2L2(Γ),

wherevα is given by (17), i.e.,

vα(x) =

∫
Γ

u(x ; ξ)Lα(ξ)ρ(ξ)dξ

||Lα||2L2(Γ)

.

Using the Legendre operatorL = −(d/dξ)[(1− ξ2)(d/dξ)] such thatLLα = α(α + 1)Lα, we get

vα(x) =
1

||Lα||2L2(Γ)

1
α(α + 1)

∫

Γ

u(x ; ξ)LLα(ξ)ρ(ξ)dξ =
1

||Lα||2L2(Γ)

1
α(α + 1)

∫

Γ

Lu(x ; ξ)Lα(ξ)ρ(ξ)dξ

sinceL is self-adjoint. Iteratingm times this result, we obtain

vα(x) =
1

||Lα||2L2(Γ)

1
(α(α + 1))m

∫

Γ

Lmu(x ; ξ)Lα(ξ)ρ(ξ)dξ

and then

||vα||2L2(D) =
1

||Lα||4L2(Γ)

1
(α(α + 1))2m

∫

D

(∫

Γ

Lmu(x ; ξ)Lα(ξ)ρ(ξ)dξ

)2

dx,
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leading to

||u− vpξ
||2L2(D)⊗L2(Γ) =

∑

α≥pξ+1

1
||Lα||4L2(Γ)

1
(α(α + 1))2m

∫

D

(∫

Γ

Lmu(x ; ξ)Lα(ξ)dξ

)2

dx ||Lα||2L2(Γ)

≤ p−4m
ξ

∑

α≥pξ+1

∫

D

(∫
Γ
Lmu(x ; ξ)Lα(ξ)ρ(ξ)dξ

||Lα||2L2(Γ)

)2

dx ||Lα||2L2(Γ)

≤ p−4m
ξ

∫

D

∑

α≥0

(∫
Γ
Lmu(x ; ξ)Lα(ξ)ρ(ξ)dξ

||Lα||2L2(Γ)

)2

||Lα||2L2(Γ) dx

= p−4m
ξ

∫

D
||Lmu(x ; ·)||2L2(Γ) dx.

We then use the property (see Lemma 1.3 in [41]) that the operatorLm is continuous fromH l+2m(Γ) into H l(Γ).
Takingl = 0, there exists a constantΛ > 0 such that

||Lmϕ||L2(Γ) ≤ Λ||ϕ||H2m(Γ), ∀ϕ ∈ H2m(Γ).

Therefore, we have

||u− vpξ
||2L2(D)⊗L2(Γ) ≤ Λ2p−4m

ξ

∫

D
||u(x ; ·)||2H2m(Γ) dx = Λ2p−2k

ξ ||u||2L2(D)⊗Hk(Γ),

which coincides with the error estimate (19), withC = Λ.
The next step involves proving the result forM ≥ 2 random variables. Let us first define the projector (acting on

thejth random variable)

πξj
pξ

(u) =
pξ∑

α=0

vα(x ; ξ1, . . . , ξj−1, ξj+1, . . . , ξM )Lα(ξj),

with

vα(x ; ξ1, . . . , ξj−1, ξj+1, . . . , ξM ) =
(u(x ; ξ1, . . . , ξj−1, ·, ξj+1, . . . , ξM ), Lα)L2(Γj)

||Lα||2L2(Γj)

.

It can be seen that the projectorπξ1
pξ
◦ · · · ◦πξM

pξ
corresponds to the projection onto theM -dimensional chaos subspace

with orderpξ. As an example, consider the case whenM = 2, pξ = 2. We have

πξ1
pξ
◦ πξ2

pξ
(u) = πξ1

pξ

(
pξ∑

α=0

vα(x ; ξ1)Lα(ξ2)

)
with vα(x ; ξ1) =

(u(x ; ξ1, ·), Lα)L2(Γ2)

||Lα||2L2(Γ2)

=
pξ∑

α=0

πξ1
pξ

(vα(x ; ξ1))Lα(ξ2)

=
pξ∑

α=0

pξ∑

β=0

vαβ(x)Lβ(ξ1)Lα(ξ2) with vαβ(x) =
(vα(x ; ·), Lβ)L2(Γ1)

||Lβ||2L2(Γ1)

.

Forpξ = 2, we haveLα(ξ2) = {1, ξ2, (3ξ2
2 − 1)/2} andLβ(ξ1) = {1, ξ1, (3ξ2

1 − 1)/2}, meaning that the projector
πξ1

pξ
◦ πξ2

pξ
coincides with the projection onto the subspace spanned by the two-dimensional second-order PC basis,

i.e., span{1, ξ1, ξ2, ξ1ξ2, (3ξ2
1 − 1)/2, (3ξ2

2 − 1)/2}.
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Returning back to the error estimation, we consider for clarityM = 2 in the remaining part of the proof, that is,
Γ = Γ1 × Γ2. Let us estimate

||u− vpξ
||L2(D)⊗L2(Γ) = ||u−

(
πξ1

pξ
◦ πξ2

pξ

)
(u)||L2(D)⊗L2(Γ).

We have

||u−
(
πξ1

pξ
◦ πξ2

pξ

)
(u)||L2(D)⊗L2(Γ) ≤ ||u− πξ1

pξ
u||L2(D)⊗L2(Γ) + ||πξ1

pξ
u−

(
πξ1

pξ
◦ πξ2

pξ

)
(u)||L2(D)⊗L2(Γ)

≤ Λp−k
ξ ||u||L2(D)⊗Hk(Γ1)⊗L2(Γ2) + ||πξ1

pξ
||︸ ︷︷ ︸

≤1

||u− πξ2
pξ

u||L2(D)⊗L2(Γ)

≤ Λp−k
ξ ||u||L2(D)⊗Hk(Γ1)⊗L2(Γ2) + Λp−k

ξ ||u||L2(D)⊗L2(Γ1)⊗Hk(Γ2). (B.1)

To proceed further, we use the following result (see Lemma 2.1 in [41]). For allk ≥ 0 and0 ≤ r ≤ k,

||u||L2(D)⊗Hr(Γ1)⊗Hk−r(Γ2) ≤ ||u||L2(D)⊗Hk(Γ1×Γ2). (B.2)

Indeed, we have:

||u||2L2(D)⊗Hr(Γ1)⊗Hk−r(Γ2)
=

∫

Γ2

k−r∑

l=0

∣∣∣∣
∣∣∣∣

∂l

∂ξl
2

u(· ; ·, ξ2)
∣∣∣∣
∣∣∣∣
2

L2(D)⊗Hr(Γ1)

ρ2(ξ2)dξ2

=
∫

Γ2

k−r∑

l=0

∫

Γ1

r∑

l′=0

∣∣∣∣
∣∣∣∣

∂l+l′

∂ξl′
1 ∂ξl

2

u(· ; ξ1, ξ2)
∣∣∣∣
∣∣∣∣
2

L2(D)

ρ1(ξ1)ρ2(ξ2)dξ1dξ2︸ ︷︷ ︸
ρ(ξ)dξ

≤
∫

Γ1×Γ2

k∑

l+l′=0

∣∣∣∣
∣∣∣∣

∂l+l′

∂ξl′
1 ∂ξl

2

u(· ; ξ1, ξ2)
∣∣∣∣
∣∣∣∣
2

L2(D)

ρ(ξ)dξ = ||u||2L2(D)⊗Hk(Γ1×Γ2)
.

Substituting (B.2) in (B.1) withr = k andr = 0, finally gives

||u− vpξ
||L2(D)⊗L2(Γ) = ||u−

(
πξ1

pξ
◦ πξ2

pξ

)
(u)||L2(D)⊗L2(Γ) ≤ 2Λp−k

ξ ||u||L2(D)⊗Hk(Γ),

that is, the error estimate (19) withC = 2Λ. The general case follows by induction which givesC = C(M) = MΛ.
It is to be noted that the constantC grows linearly withM .

APPENDIX C. STABILITY ANALYSIS OF θ-WEIGHTED TEMPORAL DISCRETIZATION SCHEME

APPENDIX C.1 Proof of Lemma 2

Writing (
um+1

h,pξ
− um

h,pξ

∆t
, um+θ

h,pξ

)

L2(D)⊗L2(Γ)

+ A(um+θ
h,pξ

, um+θ
h,pξ

) = (fm+θ
h,pξ

, um+θ
h,pξ

)L2(D)⊗L2(Γ),

using the equality

um+θ
h,pξ

= ∆t

(
θ− 1

2

)
um+1

h,pξ
− um

h,pξ

∆t
+

um+1
h,pξ

+ um
h,pξ

2
,

and using theαe-ellipticity of A onVh ⊗ Spξ ⊂ V ⊗ S, we have

∆t

(
θ− 1

2

) ∣∣∣∣
∣∣∣∣
um+1

h,pξ
− um

h,pξ

∆t

∣∣∣∣
∣∣∣∣
2

L2(D)⊗L2(Γ)

+
1

2∆t
(um+1

h,pξ
− um

h,pξ
, um+1

h,pξ
+ um

h,pξ
)L2(D)⊗L2(Γ)

+ αe ||um+θ
h,pξ

||2H1(D)⊗L2(Γ) ≤ ||fm+θ
h,pξ

||L2(D)⊗L2(Γ)||um+θ
h,pξ

||L2(D)⊗L2(Γ). (C.1)
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For everywh,pξ
=

∑

|α|≤pξ

wα,h(x)Lα(ξ) ∈ Vh ⊗ Spξ , we have

||wh,pξ
||2L2(D)⊗L2(Γ) =

∑

|α|≤pξ

||wα,h||2L2(D)||Lα||2L2(Γ) ≤
∑

|α|≤pξ

||wα,h||2H1(D)||Lα||2L2(Γ) = ||wh,pξ
||2H1(D)⊗L2(Γ).

Hence, we can use the inequality||um+θ
h,pξ

||2H1(D)⊗L2(Γ) ≥ ||um+θ
h,pξ

||2L2(D)⊗L2(Γ). Applying the inequality2ab ≤
(a2/ε) + εb2 (a, b ≥ 0, ε > 0) with ε = αe > 0 and using the fact thatθ− 1/2 ≥ 0, it follows that

1
2∆t

(
||um+1

h,pξ
||2L2(D)⊗L2(Γ) − ||um

h,pξ
||2L2(D)⊗L2(Γ)

)
+ αe ||um+θ

h,pξ
||2L2(D)⊗L2(Γ)

≤ 1
2

(
1
αe
||fm+θ

h,pξ
||2L2(D)⊗L2(Γ) + αe||um+θ

h,pξ
||2L2(D)⊗L2(Γ)

)
.

Reordering terms, we get

||um+1
h,pξ

||2L2(D)⊗L2(Γ) − ||um
h,pξ

||2L2(D)⊗L2(Γ) + αe∆t ||um+θ
h,pξ

||2L2(D)⊗L2(Γ) ≤
∆t

αe
||fm+θ

h,pξ
||2L2(D)⊗L2(Γ),

leading to

||um+1
h,pξ

||2L2(D)⊗L2(Γ) ≤ ||um
h,pξ

||2L2(D)⊗L2(Γ) +
∆t

αe
||fm+θ

h,pξ
||2L2(D)⊗L2(Γ).

We then deduce the stability result (33) by induction.

APPENDIX C.2 Proof of Lemma 3

Coming back to (C.1), we have

1
2∆t

(
||um+1

h,pξ
||2L2(D)⊗L2(Γ) − ||um

h,pξ
||2L2(D)⊗L2(Γ)

)
+ αe ||um+θ

h,pξ
||2H1(D)⊗L2(Γ)

≤ ∆t

(
1
2
− θ

) ∣∣∣∣
∣∣∣∣
um+1

h,pξ
− um

h,pξ

∆t

∣∣∣∣
∣∣∣∣
2

L2(D)⊗L2(Γ)

+ ||fm+θ
h,pξ

||L2(D)⊗L2(Γ) ||um+θ
h,pξ

||L2(D)⊗L2(Γ). (C.2)

In order to estimate||(um+1
h,pξ

− um
h,pξ

)/∆t||2L2(D)⊗L2(Γ), we substitutevh,pξ
= (um+1

h,pξ
− um

h,pξ
)/∆t in (29) which

yields

∣∣∣∣
∣∣∣∣
um+1

h,pξ
− um

h,pξ

∆t

∣∣∣∣
∣∣∣∣
2

L2(D)⊗L2(Γ)

≤ ||fm+θ
h,pξ

||L2(D)⊗L2(Γ)

∣∣∣∣
∣∣∣∣
um+1

h,pξ
− um

h,pξ

∆t

∣∣∣∣
∣∣∣∣
L2(D)⊗L2(Γ)

− A

(
um+θ

h,pξ
,
um+1

h,pξ
− um

h,pξ

∆t

)

and hence
∣∣∣∣
∣∣∣∣
um+1

h,pξ
− um

h,pξ

∆t

∣∣∣∣
∣∣∣∣
2

L2(D)⊗L2(Γ)

≤ ||fm+θ
h,pξ

||L2(D)⊗L2(Γ)

∣∣∣∣
∣∣∣∣
um+1

h,pξ
− um

h,pξ

∆t

∣∣∣∣
∣∣∣∣
L2(D)⊗L2(Γ)

+ αc ||um+θ
h,pξ

||H1(D)⊗L2(Γ)

∣∣∣∣
∣∣∣∣
um+1

h,pξ
− um

h,pξ

∆t

∣∣∣∣
∣∣∣∣
H1(D)⊗L2(Γ)

(C.3)

using the inequality (5). To proceed further, we invoke the following discrete inverse inequality that holds for quasi-
uniform meshes inRd (see [31], Theorem 4.5.11):

||wh||H1(D) ≤ (C∗i /h) ||wh||L2(D), ∀wh ∈ Vh, (C.4)
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whereC∗i is a constant independent ofh. Hence it follows that

||wh,pξ
||H1(D)⊗L2(Γ) ≤ (C∗i /h) ||wh,pξ

||L2(D)⊗L2(Γ), ∀wh,pξ
∈ Vh ⊗ Spξ .

Applying the previous inequality to(um+1
h,pξ

− um
h,pξ

)/∆t in (C.3), we deduce

∣∣∣∣
∣∣∣∣
um+1

h,pξ
− um

h,pξ

∆t

∣∣∣∣
∣∣∣∣
L2(D)⊗L2(Γ)

≤ ||fm+θ
h,pξ

||L2(D)⊗L2(Γ) +
αcC

∗
i

h
||um+θ

h,pξ
||H1(D)⊗L2(Γ).

Squaring the previous inequality and applying(a + b)2 ≤ (1 + ε)a2 + [1 + (1/ε)]b2 (a, b ≥ 0, ε > 0), we get:
∣∣∣∣
∣∣∣∣
um+1

h,pξ
− um

h,pξ

∆t

∣∣∣∣
∣∣∣∣
2

L2(D)⊗L2(Γ)

≤ (1 + ε)
(

αcC
∗
i

h

)2

||um+θ
h,pξ

||2H1(D)⊗L2(Γ) +
(
1 +

1
ε

)
||fm+θ

h,pξ
||2L2(D)⊗L2(Γ). (C.5)

Next, substituting (C.5) in (C.2), we obtain

1
2∆t

(
||um+1

h,pξ
||2L2(D)⊗L2(Γ) − ||um

h,pξ
||2L2(D)⊗L2(Γ)

)

+

(
αe −∆t

(
1
2
− θ

)
(1 + ε)

(
αcC

∗
i

h

)2
)
||um+θ

h,pξ
||2H1(D)⊗L2(Γ)

≤ ∆t

(
1
2
− θ

)(
1 +

1
ε

)
||fm+θ

h,pξ
||2L2(D)⊗L2(Γ) + ||fm+θ

h,pξ
||L2(D)⊗L2(Γ) ||um+θ

h,pξ
||L2(D)⊗L2(Γ). (C.6)

Using the inequality2ab ≤ γa2 +
1
γ

b2 (a, b ≥ 0, γ > 0) with γ = 4ε2, we obtain

||fm+θ
h,pξ

||L2(D)⊗L2(Γ) ||um+θ
h,pξ

||L2(D)⊗L2(Γ) ≤ 2ε2||um+θ
h,pξ

||2L2(D)⊗L2(Γ) +
1

8ε2
||fm+θ

h,pξ
||2L2(D)⊗L2(Γ). (C.7)

For estimating||um+θ
h,pξ

||2L2(D)⊗L2(Γ) we use the following Poincaré’s inequality

||wh||L2(D) ≤ CD||wh||H1
0 (D), ∀wh ∈ Vh ⊂ H1

0 (D), (C.8)

from which it follows that

||wh||2L2(D) ≤
C2
D

C2
D + 1

||wh||2H1(D), ∀wh ∈ Vh

and

||wh,pξ
||2L2(D)⊗L2(Γ) ≤

C2
D

C2
D + 1

||wh,pξ
||2H1(D)⊗L2(Γ), ∀wh,pξ

∈ Vh ⊗ Spξ .

Hence we obtain the inequality

||fm+θ
h,pξ

||L2(D)⊗L2(Γ) ||um+θ
h,pξ

||L2(D)⊗L2(Γ) ≤ 2ε2 C2
D

C2
D + 1

||um+θ
h,pξ

||2H1(D)⊗L2(Γ) +
1

8ε2
||fm+θ

h,pξ
||2L2(D)⊗L2(Γ)

that we substitute in (C.6) to get

1
2∆t

(
||um+1

h,pξ
||2L2(D)⊗L2(Γ) − ||um

h,pξ
||2L2(D)⊗L2(Γ)

)

+
(

αe − ∆t(1− 2θ)(1 + ε)α2
c(C

∗
i )2

2h2
− 2ε2C2

D
C2
D + 1

)
||um+θ

h,pξ
||2H1(D)⊗L2(Γ)

≤ ∆t

2
(1− 2θ)

(
1 +

1
ε

)
||fm+θ

h,pξ
||2L2(D)⊗L2(Γ) +

1
8ε2

||fm+θ
h,pξ

||2L2(D)⊗L2(Γ). (C.9)
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To ensure stability in (C.9), we require the following sufficient conditionαe − β∆t− λ ≥ 0 with

β =
(1− 2θ)(1 + ε)α2

c(C
∗
i )2

2h2
> 0 andλ =

2ε2C2
D

C2
D + 1

> 0.

Next, assuming thatαe − λ ≥ 0, that is,

0 < ε ≤
(

αe(C2
D + 1)

2C2
D

)1/2

,

it follows that

0 ≤ ∆t ≤ αe − λ

β
=

2h2
(
αe(C2

D + 1)− 2ε2C2
D

)

(C2
D + 1)(1− 2θ)α2

c(C∗i )2(1 + ε)
.

Assuming that the preceding inequalities hold, we finally get

||um+1
h,pξ

||2L2(D)⊗L2(Γ) ≤ ||um
h,pξ

||2L2(D)⊗L2(Γ) + ∆t

(
(1− 2θ)

(
1 +

1
ε

)
∆t +

1
4ε2

)
||fm+θ

h,pξ
||2L2(D)⊗L2(Γ)

from which we deduce the final result (34) by induction.
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