图书馆订阅: Guest
国际流体力学研究期刊

每年出版 6 

ISSN 打印: 2152-5102

ISSN 在线: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Soot Formation in Premixed Constant-Volume Propane Combustion at Pressures up to 6 Mpa

卷 25, 册 1-3, 1998, pp. 266-275
DOI: 10.1615/InterJFluidMechRes.v25.i1-3.230
Get accessGet access

摘要

The effects of pressure, temperature and equivalence ratio on soot formation in premixed propane-oxygen-inert gas combustion have been investigated over wide ranges of pressure (0.1 to 6 MPa) temperature (1200 to 2100 K) and equivalence ratio (1.5 to 2.7) in a specially designed disk type constant volume combustion chamber. To observe the soot formation under high pressure, premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degree intervals. The eight converging flames compress the end gases to a high pressure. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in situ laser extinction technique and the burnt gas temperature during the same period by the two-color pyrometry method. The pressure and temperature during soot formation are varied by changing the initial charge pressure and by changing the volume fraction of inert gas in the premixture, respectively. It is found that the soot yield is dependent on the pressure, temperature and equivalence ratio; the soot yield increases under the following conditions:
1) decreasing temperature and increasing equivalence ratio at constant pressure,
2) increasing pressure and decreasing temperature at constant equivalence ratio,
3) increasing equivalence ratio at constant temperature and pressure.

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain