图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际流体力学研究期刊
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN 打印: 2152-5102
ISSN 在线: 2152-5110

国际流体力学研究期刊

DOI: 10.1615/InterJFluidMechRes.v27.i2-4.120
pages 331-362

Numerical Analysis of Multiphase Mixing - Comparison of First and Second Order Accurate Schemes

M. Leskovar
"Jozef Stefan" Institute, Slovenia
Jure Marn
University of Maribor, Slovenia
Borut Mavko
Reactor Engineering Division, "Jozef Stefan" Institute, Jamova 39, 1000 Ljubljana, SLOVENIA

ABSTRACT

During a severe reactor accident following core meltdown when the molten fuel comes into contact with the coolant water a steam explosion may occur. The steam explosion can be divided into more stages. The first, premixing stage is important since it gives the initial conditions of the possible steam explosion and determines the maximum quantity of melt, which might be then involved into the explosion. To investigate the mixing process associated with the melt penetration a large number of premixing codes has been developed.
The purpose of this work is to analyze the influence of first and second order accurate numerical schemes on the premixing phase simulation results and to find out if a probabilistic treatment of some terms in the multiphase flow equations introduces any advantages. For performing this kind of analysis the simple premixing code ESE has been developed.
With ESE a number of premixing experiments performed at the Oxford University and at the QUEOS facility at Forschungszentrum Karlsruhe has been simulated using the first order accurate upwind method and the second order accurate high-resolution method. The performed analysis showed that the results obtained with the first and second accurate numerical schemes differ and that the probabilistic approach has an almost negligible effect on the simulation results.


Articles with similar content:

ESTIMATION OF COREMELT EVENT TREES
ICHMT DIGITAL LIBRARY ONLINE, Vol.9, 1995, issue
H. Plank, H. Weisshaupl
Accident Progression and Source Term Analyses for LWR Severe Accidents - Japanese Activities and Progress -
ICHMT DIGITAL LIBRARY ONLINE, Vol.9, 1995, issue
O. Furukawa, N. Tanaka, M. Kajimoto, Y. Takechi, M. Hirano
BEST ESTIMATE THERMAL-HYDRAULIC ANALYSIS OF LOSS OF COOLANT ACCIDENTS
Advances in Heat Transfer Engineering, Vol.1, 2003, issue
Rolandas Urbonas, Algirdas Kaliatka, Mindaugas Vaisnoras
FLOW AND HEAT TRANSFER IN PRESSURIZED WATER REACTOR REFLOOD
Multiphase Science and Technology, Vol.22, 2010, issue 4
S. P. Walker, Geoffrey F. Hewitt, Colin P. Hale, Y. J. Zeng
Numerical Simulation of the Fluid-Solid Mixture Flow Based on the MPS method
Second Thermal and Fluids Engineering Conference, Vol.4, 2017, issue
Kailun Guo, Suizheng Qiu, Ronghua Chen, G. H. Su, Yonglin Li