图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际流体力学研究期刊
ESCI SJR: 0.22 SNIP: 0.446 CiteScore™: 0.5

ISSN 打印: 2152-5102
ISSN 在线: 2152-5110

国际流体力学研究期刊

DOI: 10.1615/InterJFluidMechRes.v34.i2.50
pages 159-178

Effect of Restriction and Reynolds Number on the Pressure of Blood of a Stenotic Artery

Dipak Kumar Mandal
Deptartment of Mechanical Engineering, College of Engineering & Management, Kolaghat, P.O: K.T.P.P. Township, Midnapore (E) - 721171, West Bengal, India
Somnath Chakrabarti
Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology Shibpur, Howrah, 711103, West Bengal, India

ABSTRACT

Coronary artery disease is the end result of a complex process called atherosclerosis, which is commonly called hardening of the arteries. The pressure of blood in a coronary artery is considered to be one of the important contributors for the formation and progression of atherosclerosis. Therefore, in this paper, the impact of flow Reynolds number and percent stenosis on wall pressure and average pressure of blood near the stenosis in a part of coronary artery is studied considering laminar flow and blood as Newtonian fluid. The two-dimensional steady differential equations for conservation of mass and momentum is solved by finite difference method for Reynolds number ranging from 25 to 375 and percent stenosis from 10 to 90 %. From the study, it is revealed that for all the cases, higher the Reynolds number, higher is the concerned non-dimensional pressure. A sharp variation in dimensionless wall and average pressure has also been noted at the zone of restriction. The variation in non-dimensional wall pressure and average static pressure near the zone of stenosis is higher both for high percent stenosis and low Reynolds number.


Articles with similar content:

Study of Pressure Drop and Flow Characteristics Across Rectangular Stenotic Models
International Journal of Fluid Mechanics Research, Vol.34, 2007, issue 5
Dipak Kumar Mandal, Somnath Chakrabarti
Variation of Wall Shear Stress and Flow Characteristics Across Cosine Shaped Stenotic Model with Flow Reynolds Number and Degree of Stenosis
International Journal of Fluid Mechanics Research, Vol.37, 2010, issue 6
Ranjan Ganguly, Moloy Kumar Banerjee, Amitava Datta
Study on Pressure Drop and Center Line Velocity Distribution Across Cosine Shaped Stenotic Model
International Journal of Fluid Mechanics Research, Vol.36, 2009, issue 4
Ranjan Ganguly, Moloy Kumar Banerjee, Amitava Datta
Laminar Blood Flow through a Model of Arterial Stenosis with Oscillating Wall
International Journal of Fluid Mechanics Research, Vol.41, 2014, issue 5
Md. Mamun Molla, Rumia Sultana, Sumaia Parveen Shupti, Mir Golam Rabby
Analysis of Steady and Physiological Pulsatile Flow Characteristics in an Artery with Various Percentages of Restrictions
International Journal of Fluid Mechanics Research, Vol.42, 2015, issue 3
Nirmal Kumar Manna, Somnath Chakrabarti, P. Goswami, Dipak Kumar Mandal