图书馆订阅: Guest
国际流体力学研究期刊

每年出版 6 

ISSN 打印: 2152-5102

ISSN 在线: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

EXPERIMENTAL AND SIMULATION STUDIES ON AERODYNAMIC DRAG REDUCTION OVER A PASSENGER CAR

卷 46, 册 1, 2019, pp. 39-61
DOI: 10.1615/InterJFluidMechRes.2018025171
Get accessGet access

摘要

The present experimental and simulation investigation includes aerodynamic drag reduction over a car by flow control using a vortex generator (VG) and spoiler. The model of the car was fabricated on the scale of 15:1 using plaster of Paris. A test facility is built to convincingly replicate the flow over a model of a high-speed car. Primarily, the car model is tested at different incidence angles of flow to obtain total drag over the model. Furthermore, 26 different combinations were tested to find out the condition for minimum drag. In the crosswind condition (± 30 deg), 36.36% additional area of the car is exposed to the direct wind that causes an increment of 38.61% in the drag coefficient. The increment of flow angle from 0 to 30 deg causes flow separation on the roof of the vehicle near the leeward corner. The maximum 68.18% drag coefficient is reduced at β = 0 deg, α = +45 deg, and the co-rotating VG. The best combination in terms of a surface static pressure coefficient rise (from -0.041 to +2.622) is found at β = 0 deg, α = 0 deg, and the VG attached to the upstream of the spoiler. A formulated computational fluid dynamics model is in good match with the experimental results.

对本文的引用
  1. Hamiga Władysław Marek, Ciesielka Wojciech Bronisław, Numerical Analysis of Aeroacoustic Phenomena Generated by Heterogeneous Column of Vehicles, Energies, 15, 13, 2022. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain