图书馆订阅: Guest
真核基因表达评论综述™

每年出版 6 

ISSN 打印: 1045-4403

ISSN 在线: 2162-6502

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.6 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.2 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00058 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.345 SNIP: 0.46 CiteScore™:: 2.5 H-Index: 67

Indexed in

Paradoxical Role of Dengue Virus Envelope Protein Domain III Antibodies in Dengue Virus Infection

卷 30, 册 3, 2020, pp. 199-206
DOI: 10.1615/CritRevEukaryotGeneExpr.2020028598
Get accessGet access

摘要

Every year, approximately 100 million individuals are infected with dengue viral infections. Severe dengue infection, characterized as dengue hemorrhagic fever, leads to loss of intravascular fluids and severe bleeding. During dengue virus (DENV) secondary infection, the body produces neutralizing antibodies that cause a strong immune response, resulting in severe hemolysis and plasma leakage. DENV infections in humans stimulate production of virus serotype-specific and cross-reactive antibodies. The envelope (E) protein of DENV contains potent antigenic sites, with one known as E protein domain III (EDIII). Studies of DENV EDIII in mouse models have shown that strongly neutralizing mouse monoclonal antibodies (mAbs) are DENV-serotype specific and bind to an epitope on EDIII that is unique to each serotype. Unlike DENV-serotype-specific mouse mAbs, cross-reactive mAbs that bind to EDIII have moderate-to-weak neutralizing activity. Studies with mouse mAbs resulted in identification and mapping of different epitopes on the lateral ridge of DENV EDIII.

参考文献
  1. Pierson T, Diamond M. Vaccine evelopment as a means to control dengue virus pathogenesis: Do we know enough? Ann Rev Virol. 2014;1(1):375.

  2. Rodenhuis-Zybert IA, Wilschut J, Smit JM. Dengue virus life cycle: Viral and host factors modulating infectivity. Cell Mol Life Sci. 2010 Aug;67(16):2773-86. PubMed PMID: 20372965. Epub 2010/04/08. eng.

  3. Whitehead SS, Blaney JE, Durbin AP, Murphy BR. Prospects for a dengue virus vaccine. Nat Rev Microbiol. 2007 Jul;5(7):518-28. PubMed PMID: 17558424. Epub 2007/06/15.eng.

  4. Modis Y, Ogata S, Clements D, Harrison SC. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci USA. 2003 Jun 10;100(12):6986-91. PubMed PMID: 12759475. PMCID: 165817. Epub 2003/05/22.eng.

  5. Kumar CS, Sharma S. Dengue virus infection. Natl Med J India. 2016 Dec 30;2016:29.

  6. Gregson A, Edelman R. Dengue virus infection. Pediat Infect Dis J. 2003;22(2):179-81.

  7. Halstead SB, editor. Tropical medicine science and practice. Dengue: Overview and history. Singapore: World Scientific Publishing Co.; 2008. pp. 1-28.

  8. Tuiskunen Back A, Lundkvist A. Dengue viruses-An overview. Infect Ecol Epidemiol. 2013;3(1):19839.

  9. Diamond MS, Pierson TC. Molecular insight into dengue virus pathogenesis and its implications for disease control. Cell. 2015;162(3):488-92.

  10. Simmons CP, Farrar JJ, van Vinh Chau N, Wills B. Dengue. New Engl J Med. 2012;366(15):1423-32.

  11. Hesse RR. Dengue virus evolution and virulence models. Clin Infect Dis. 2007;44(11):1462-6.

  12. Martina BE, Koraka P, Osterhaus AD. Dengue virus pathogenesis: An integrated view. Clin Microbiol Rev. 2009 Oct;22(4):564-81. PubMed PMID: 19822889. PM.

  13. Malavige GN, Fernando S, Fernando DJ, Seneviratne SL. Dengue viral infections. Postgrad Med J. 2004 Oct;80(948):588-601. PubMed PMID: 15466994. PM-CID: 1743110. Epub 2004/10/07.eng.

  14. Gurugama P, Garg P, Perera J, Wijewickrama A, Seneviratne SL. Dengue viral infections. Indian J Dermatol. 2010 Jan-Mar;55(1):68-78. PubMed PMID: PMC2856379.

  15. Guzman MG, Kouri G. Dengue: An update. Lancet Infect Dis. 2002 01/01;2(1):33-42.

  16. Simmons CP, Chau TNB, Thuy TT, Tuan NM, Hoang DM, Thien NT, Lien LB, Quy NT, Hieu NT, Hien TT, McElnea C, Young P, Whitehead S, Hung NT, Farrar J. Maternal antibody and viral factors in the pathogenesis of dengue virus in infants. J Infect Dis. 2007;196(3):416-24.

  17. Gibbons RV. Dengue conundrums. Int J Antimicrob Agents. 2010;36:S36-9.

  18. World Health Organization, UNICEF. Handbook for clinical management of dengue. Vol. viii. Geneva, Swit-zerland: WHO Institutional Repository for Information Sharing; 2012.

  19. World Health Organization. Comprehensive guideline for prevention and control of dengue and dengue haemorrhagic fever. Revised and expanded edition. New Delhi, India: WHO Regional Office for South-East Asia; 2011.

  20. Kalayanarooj S. Clinical manifestations and management of dengue/DHF/DSS. Trop Med Health. 2011;39(4 Suppl):S83-7.

  21. Mairuhu ATA, Wagenaar J, Brandjes DPM, van Gorp ECM. Dengue: An arthropod-borne disease of global importance. Eur J Clin Microbiol Infect Dis. 2004 Jun 01;23(6):425-33.

  22. Murphy BR, Whitehead SS. Immune response to dengue virus and prospects for a vaccine. Ann Rev Immunol. 2011;29:587-619.

  23. Perera R, Kuhn RJ. Structural proteomics of dengue virus. Curr Opin Microbiol. 2008;11(4):369-77.

  24. Soares RO, Caliri A. Stereochemical features of the envelope protein domain III of dengue virus reveals putative antigenic site in the five-fold symmetry axis. Biochim Biophys Acta. 2013 Jan;1834(1):221-30. PubMed PMID: 23009809. Epub 2012/09/27.eng.

  25. Green AM, Beatty PR, Hadjilaou A, Harris E. Innate immunity to dengue virus infection and subversion of antiviral responses. J Mol Biol. 2014 03/20;426(6):1148-60.

  26. Fahimi H, Sadeghizadeh M, Mohammadipour M. In silico analysis of an envelope domain III-based multivalent fusion protein as a potential dengue vaccine candidate. Clin Exp Vaccine Res. 2016 Jan;5(1):41-9. PubMed PMID: 26866023. PMCID: 4742598. Epub 2016/02/13.eng.

  27. Pierson TC, Fremont DH, Kuhn RJ, Diamond MS. Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: Implications for vaccine development. Cell Host Microbe. 2008;4(3):229-38.

  28. Pitcher TJ, Sarathy VV, Matsui K, Gromowski GD, Huang CY-H, Barrett AD. Functional analysis of dengue virus (DENV) type 2 envelope protein domain 3 type-specific and DENV complex-reactive critical epitope residues. J Gener Virol. 2015;96(2):288-93.

  29. Fibriansah G, Tan JL, Smith SA, de Alwis AR, Ng TS, Kostyuchenko VA, Ibarra KD, Wang J, Harris E, de Silva A. A potent antidengue human antibody preferentially recognizes the conformation of E protein monomers assembled on the virus surface. EMBO Mol Med. 2014 Mar;6(3):358-71.

  30. Lai C-Y, Tsai W-Y, Lin S-R, Kao C-L, Hu H-P, King C-C, Wu H-C, Chang G-J, Wang W-K. Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J Virol. 2008;82(13): 6631-43.

  31. Valdes K, Alvarez M, Pupo M, Vazquez S, Rodriguez R, Guzman MG. Human dengue antibodies against structural and nonstructural proteins. Clin Diagnost Lab Immunol. 2000;7(5):856-7.

  32. Lin C-F, Wan S-W, Cheng H-J, Lei H-Y, Lin Y-S. Autoimmune pathogenesis in dengue virus infection. Viral Immunol. 2006;19(2):127-32.

  33. dos Santos FB, Miagostrovich MP, Nogueira RM, Schatzmayr HG, Riley LW, Harris E. Analysis of recombinant dengue virus polypeptides for dengue diagnosis and evaluation of the humoral immune response. Am J Trop Med Hyg. 2004 Aug;71(2):144-52.

  34. Lazaro-Olan L, Mellado-Sanchez G, Garcia-Cordero J, Escobar-Gutierrez A, Santos-Argumedo L, Gutierrez-Castaneda B, Cedillo-Barron L. Analysis of antibody response in human dengue patients from the Mexican coast using recombinant antigens. Vector Borne Zoonotic Dis. 2008;8(1):69-80.

  35. Flipse J, Smit JM. The complexity of a dengue vaccine: A review of the human antibody response. PLoS Negl Trop Dis. 2015 Jun 11;9(6):e0003749.

  36. Wahala W, Kraus AA, Haymore LB, Accavitti-Loper MA, de Silva AM. Dengue virus neutralization by human immune sera: Role of envelope protein domain III-reactive antibody. Virology. 2009;392(1):103-13.

将发表的论文

Fundamentals and translational applications of stem cells and biomaterials in dental, oral and craniofacial regenerative medicine Yasaman Daneshian, Eric Lewallen, Amr Badreldin, Allan Dietz , Gary Stein, Simon Cool, Hyun-Mo Ryoo, Young Dan Cho, Andre van Wijnen Inflammatory Markers Involved in the Pathogenesis of Dupuytren Contracture William Cates, Janet Denbeigh, Ralph Salvagno, Sanjeev Kakar, Andre van Wijnen, Charles Eaton PRMT6 promotes the immune evasion of gastric cancer via upregulating ANXA1 Liang Xu, Fenger Zhang, Binqi Yu, Shengnan Jia, Sunfu Fan SIAH1 promotes the pyroptosis of cardiomyocytes in diabetic cardiomyopathy via regulating IκB-α/NF-κB signaling Jinbin Wu, Yaoming Yan SLC7A2-mediated lysine catabolism inhibits immunosuppression in triple negative breast cancer Yuanyuan Sun, Yaqing Li, Chengying Jiang, Chenying Liu, Yuanming Song SIAH2-mediated degradation of ACSL4 inhibits the anti-tumor activity of CD8+ T cells in hepatocellular carcinoma Fangzheng Shu, Yuhua Shi, Xiangxiang Shan, Wenzhang Zha, Rengen Fan, Wanjiang Xue RBM15-mediated N6-methyl adenosine (m6A) modification of EZH2 drives the epithelial-mesenchymal transition of cervical cancer Ruixue Wang, Wenhua Tan Evidence-Based Storytelling and A Strategic Roadmap to Promote Cancer Prevention Via Adolescent HPV Vaccination in Northern New England Matthew Dugan, Gary Stein, Jan Carney, Sheila Clifford-Bova KDM4A-AS1 promotes cell proliferation, migration and invasion via the miR-4306/STX6 axis in hepatocellular carcinoma Wei Cao, Yuhan Ren, Ying Liu, Guoshu Cao, Zhen Chen, Fan Wang HDAC1-mediated downregulation of NEU1 exacerbates the aggressiveness of cervical cancer Nanzi Xie, Sisi Mei, Changlan Dai, Wei Chen Effect of miR-26b-5p on progression of acute myeloid leukemia by regulating USP48-mediated Wnt/β-catenin pathway Yu Xie, Lin Tan, Kun Wu, Deyun Li, Chengping Li
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain