图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
真核基因表达评论综述™
影响因子: 1.841 5年影响因子: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN 打印: 1045-4403
ISSN 在线: 2162-6502

真核基因表达评论综述™

DOI: 10.1615/CritRevEukaryotGeneExpr.v14.i12.20
10 pages

Development of Cell Cultures with Competency for Contributing to the Zebrafish Germ Line

Lianchun Fan
Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
Annette Alestrom
Department of Biochemistry, Norwegian School of Veterinary Science, Oslo Norway
Peter Alestrom
Department of Biochemistry, Norwegian School of Veterinary Science, Oslo Norway
Paul Collodi
Department of Animal Sciences, Purdue University, West Lafayette, IN 47907

ABSTRACT

The zebrafish is an established model for the genetic analysis of vertebrate development. Forward-genetic screens have generated thousands of mutations, and antisense-based methods have been used to transiently knockdown gene expression during embryogenesis. Although these methods have made the zebrafish a valuable system for the identification and functional characterization of developmentally important genes, one deficiency of the zebrafish model is the absence of methods to introduce targeted mutations to generate knockout lines offish. Application of gene-targeting methods has been limited in nonmurine species due to the absence of germ-line competent embryonic stem (ES) cell lines. Recently, progress was made in addressing this problem by the derivation of zebrafish embryo cell lines that remain pluripotent and germ-line competent for multiple passages in culture. Zebrafish germ-line chimeras were generated using cultures derived from embryos at two different developmental stages, and targeted insertion of vector DNA by homologous recombination was demonstrated in both cultures. Several strategies are being used to optimize the production and identification of germ-line chimeras. The zebrafish embryo cell culture system should provide the basis of a gene-targeting approach that will complement other genetic strategies and improve the utility of the zebrafish model for studies of development and disease.


Articles with similar content:

Stem Cell Marker OCT3/4 in Tumor Biology and Germ Cell Tumor Diagnostics: History and Future
Critical Reviews™ in Oncogenesis, Vol.12, 2006, issue 3-4
Jeroen de Jong, Leendert H. J. Looijenga
Multiscale Modeling of Cellular Epigenetic States: Stochasticity in Molecular Networks, Chromatin Folding in Cell Nuclei, and Tissue Pattern Formation of Cells
Critical Reviews™ in Biomedical Engineering, Vol.43, 2015, issue 4
Jie Liang, Gamze Gursoy, Youfang Cao, Anna Terebus, Jieling Zhao, Hammad Naveed
Brucella Virulence Mechanisms and Implications in Novel Vaccines and Drugs
Critical Reviews™ in Eukaryotic Gene Expression, Vol.23, 2013, issue 1
Zeliang Chen, Guangjun Gao, Yufei Wang, Xingran Xu, Jie Xu
Architectural Genetic and Epigenetic Control of Regulatory Networks: Compartmentalizing Machinery for Transcription and chromatin remodeling in nuclear Microenvironments
Critical Reviews™ in Eukaryotic Gene Expression, Vol.20, 2010, issue 2
Sayyed Kaleem Zaidi, Janet L. Stein, Jane B. Lian, Martin Montecino, Jeffrey A. Nickerson, Andre J. van Wijnen, Gary S. Stein, Anthony N. Imbalzano
The Role of the Transcription Factor Ets1 in Lupus and Other Autoimmune Diseases
Critical Reviews™ in Immunology, Vol.36, 2016, issue 6
Alyssa Kearly, Lee Ann Garrett-Sinha, Anne B. Satterthwaite