图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
真核基因表达评论综述™
影响因子: 1.841 5年影响因子: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN 打印: 1045-4403
ISSN 在线: 2162-6502

真核基因表达评论综述™

DOI: 10.1615/CritRevEukaryotGeneExpr.v14.i12.60
48 pages

Progress Toward Skeletal Gene Therapy

Henry J. Klamut
Departments of Medicine and Biochemistry, Loma Linda University and the Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial Veterans Administration Medical Center, 11201 Benton Street, Loma Linda, CA 92357
Shin-Tai Chen
Departments of Medicine and Biochemistry, Loma Linda University and the Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial Veterans Administration Medical Center, 11201 Benton Street, Loma Linda, CA 92357
K.-H. William Lau
Departments of Medicine and Biochemistry, Loma Linda University and the Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial Veterans Administration Medical Center, 11201 Benton Street, Loma Linda, CA 92357
David J. Baylink
Departments of Medicine and Biochemistry, Loma Linda University and the Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial Veterans Administration Medical Center, 11201 Benton Street, Loma Linda, CA 92357

ABSTRACT

Skeletal gene therapy is an attractive new approach to the treatment of bone disorders. Impressive advances in our knowledge of the molecular genetic basis of skeletal disorders and fracture healing have led to the development of novel therapeutics based on ectopic expression of one or more genes in patient cells that can influence repair or regenerative processes in bone. Although still a relatively immature field, proof-of-principle for enhanced bone formation through skeletal gene therapy has already been established. The challenge now is to more precisely define optimal cellular targets and therapeutic genes, and to develop safe and efficient ways to deliver therapeutic genes to target cells. In this review, we will highlight some of the exciting advances that have been made in skeletal gene therapy in recent years, with a focus on treatment of localized skeletal lesions. Strengths and weaknesses of current approaches will be discussed, as will strategies for improved safety and therapeutic outcome in the future. Skeletal gene therapy can have an enormous impact on patient care. The next 5 years will present us with unparalleled opportunities to develop more effective therapeutic strategies and overcome obstacles presented by current gene transfer technologies.


Articles with similar content:

Twenty Years on: What Do We Really Know about Ewing Sarcoma and What Is the Path Forward?
Critical Reviews™ in Oncogenesis, Vol.20, 2015, issue 3-4
Elizabeth R. Lawlor, Poul H. Sorensen
Structuring Polymers for Delivery of DNA-Based Therapeutics: Updated Insights
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.29, 2012, issue 6
Suresh P. Vyas, Shailja Tiwari, Madhu Gupta
Predictive Biomarkers for Response to Therapy in Advanced Colorectal/Rectal Adenocarcinoma
Critical Reviews™ in Oncogenesis, Vol.17, 2012, issue 4
Payal Kapur
Growth Factors and Gene Transfer with DNA Strand Technique in Tendon Healing
Journal of Long-Term Effects of Medical Implants, Vol.12, 2002, issue 2
Feng Zhang, William C. Lineaweaver
Precise Diagnosis and Treatment of Thymic Epithelial Tumors Based on Molecular Biomarkers
Critical Reviews™ in Oncogenesis, Vol.22, 2017, issue 5-6
Jun Du, Xiao-Jun Zhou