图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.737 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 30, 2020 卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.2015010623
pages 335-374

A SPHERICAL VOLUME INTERACTION DDM APPROACH FOR DIESEL SPRAY MODELING

Roberto Torelli
Argonne National Laboratory
Gianluca D'Errico
Dipartimento di Energia, Politecnico di Milano, via Lambruschini 4, 20158 Milan, Italy
Tommaso Lucchini
Dipartimento di Energia, Politecnico di Milano, via Lambruschini 4, 20158 Milan, Italy
V. Ikonomou
Caterpillar UK Engines Company Ltd., Frank Perkins Way, Eastfield, Peterborough PE1 5NA, United Kingdom
R. M. McDavid
Caterpillar Inc, Technical Center−Bldg F, P.O. Box 1875, Peoria IL 61656-1875

ABSTRACT

This work presents an implementation and evaluation of an alternative approach for describing exchange of mass, momentum, and energy in diesel spray computational fluid dynamics (CFD) simulations using discrete droplet modeling (DDM). During the calculation, each parcel in the domain is surrounded by a spherical volume of ambient gas and interacts first with it instead of interacting directly with the cell volume hosting the parcel. In this way, the interaction volume is independent of the mesh and can be located in more than one cell. This model was implemented using the Open-FOAM CFD opensource C++ library. It was developed with the aim to reduce grid dependencies related to spray-grid mutual orientation and to the choice of the injector nozzle position with respect to the cell hosting it. All the submodel constants were set to match experimental data of a chosen baseline case in nonreactant vaporizing conditions. Then the new approach predictions were first compared to standard DDM on moving the injector position within the hosting cell and later on varying ambient density and injection pressure of fuel. Also, a study of the dependency of the results on the spray-grid mutual orientation was carried out. High-speed imaging and Rayleigh-scattering measurements taken from the engine combustion department (ECN) web database were used to assess numerical results: a good accuracy in the predictions of liquid and vapor spray penetration as well as axial and radial mixture fraction profiles, can be simultaneously achieved on varying thermophysical and geometrical settings. If applied to engine calculations, then the reduced dependency on the nozzle position becomes appreciable when injector with multiple nozzles are used.


Articles with similar content:

Numerical Study of Liquid Fuel Spray Characteristics
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 4-6
Rolf D. Reitz, Masataka Arai, Yi Liu, Zh. Liu, T. Obokata
THEORETICAL INVESTIGATION ON VARIABLE-DENSITY SPRAYS
Atomization and Sprays, Vol.12, 2002, issue 1-3
T. Donateo, Arturo De Risi, D. Laforgia
DIESEL SPRAY CFD SIMULATIONS BASED ON THE Σ-Υ EULERIAN ATOMIZATION MODEL
Atomization and Sprays, Vol.23, 2013, issue 1
E. Baldwin, N. Trask, David P. Schmidt, Jose M. Pastor, Adrian Pandal, Jose M. Garcia-Oliver
MODELING OF n-HEPTANE SPRAYS INJECTED THROUGH MULTI-HOLE TYPE GDI INJECTOR
Atomization and Sprays, Vol.22, 2012, issue 3
Sungwook Park, Sanghoon Lee, Yunjung Oh
DIESEL SPRAY ATOMIZATION MODEL CONSIDERING NOZZLE EXIT TURBULENCE CONDITIONS
Atomization and Sprays, Vol.8, 1998, issue 4
Kang Y. Huh, Eunju Lee, Jaye Koo