图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.737 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 30, 2020 卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.v21.i1.30
pages 31-40

CFD Study of Needle Motion Influence on the Spray Conditions of Single-Hole Injectors

Xandra Margot
CMT-Motores Térmicos Edificio 6D Universitat Politècnica de València Camino de Vera s/n 46022 Valencia. Spain
Sergio Hoyas
School of Aeronautics, Universidad Politecnica de Madrid 28040 Madrid, Spain; CMT - Motores Térmicos, Universidad Politécnica de Valencia, Camino de Vera S/N, 46022 Valencia, Spain
P. Fajardo
CMT - Motores Térmicos, Universidad Politécnica de Valencia, Camino de Vera S/N, 46022 Valencia, Spain
S. Patouna
CMT - Motores Térmicos, Universidad Politécnica de Valencia, Camino de Vera S/N, 46022 Valencia, Spain

ABSTRACT

The spray characteristics and consequently the success of the diesel combustion process is strongly affected by the manner in which fuel is introduced in the combustion chamber. This work consists in studying the effect of needle motion of typical single-hole sac-type injectors on nozzle exit conditions. Three-dimensional moving mesh simulations have been carried out to calculate the injection process using cylindrical and conical nozzle geometries. The CFD analysis includes a study of the effect of cavitation on kinetic turbulent energy and velocity profiles. Results show that the flow within the nozzle and at the exit varies depending on the nozzle geometry and needle position. The model predicts clouds of cavitation that grow and exit the nozzle at low needle lifts. A kind of hysteresis in the development of the flow has also been observed between needle opening and closing. The existing correlation between turbulence and cavitation at the nozzle hole exit during the needle motion has been quantified.


Articles with similar content:

SPRAY BREAKUP MECHANISM FROM THE HOLE-TYPE NOZZLE AND ITS APPLICATIONS
Atomization and Sprays, Vol.10, 2000, issue 3-5
Hiroyuki Hiroyasu
STRING CAVITATION IN A FUEL INJECTOR
Atomization and Sprays, Vol.27, 2017, issue 3
Tokihiro Katsui, Akira Sou, Shigeru Nishio, Raditya Hendra Pratama
EFFECTS OF CAVITATION AND INTERNAL FLOW ON ATOMIZATION OF A LIQUID JET
Atomization and Sprays, Vol.8, 1998, issue 2
Keiya Nishida, Hiroyuki Hiroyasu, N. Tamaki, M. Shimizu
MULTIDIMENSIONAL SIMULATION OF CAVITATING FLOWS IN DIESEL INJECTORS BY A HOMOGENEOUS MIXTURE MODELING APPROACH
Atomization and Sprays, Vol.18, 2008, issue 2
Olivier Simonin, Chawki Habchi, Nicolas Dumont
SINGLE-PHASE AERODYNAMIC FLOW FIELD VALIDATION OF NOVEL AIRBLAST ATOMIZER DESIGNS
Atomization and Sprays, Vol.20, 2010, issue 7
Ghasem G. Nasr, Leigh Morgan, Martin L. Burby, Andrew J. Yule