图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.737 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.v3.i3.10
pages 249-264

THE EFFECT OF VAPORIZATION AND GAS COMPRESSIBILITY ON LIQUID JET ATOMIZATION

X. W. Lian
Engine Research Center, Department of Mechanical Engineering, University of Wisconsin, Madison, Wisconsin 53706
Rolf D. Reitz
Engine Research Center, University of Wisconsin-Madison, Rm 1018A, 1500 Engineering Drive, Madison, Wisconsin 53706, USA

ABSTRACT

A linear stability analysis is presented for an evaporating jet. The development of the surface hydrodynamic instability is assumed to be much faster than the surface evolution due to evaporation. This allows the process to be considered as quasi-steady, and the normal mode method for the steady basic solution is applicable as an approximation. It is found that for low-speed jets undergoing Rayleigh breakup, jet surface evaporation is a destabilizing factor, while for high-speed atomizing jets, surface evaporation becomes stabilizing. This is due to the fact that the evaporation flux distributions at the troughs and crests of the waves on the surface of the liquid jet are different for these two eases. The effect of gas compressibility is also analyzed. For subsonic jets, the maximum growth rate and the corresponding wavenumber is found to be underestimated when the effects of the gas compressibility are neglected, since the gas pressure and gas density at the interface are higher than predicted by the conventional incompressible gas theory.


Articles with similar content:

THREE-DIMENSIONAL INSTABILITY OF VISCOUS LIQUID SHEETS
Atomization and Sprays, Vol.6, 1996, issue 6
E. A. Ibrahim, E. T. Akpan
HYDRODYNAMIC INSTABILITIES OF TWO VISCOELASTIC LIQUID SHEET MODELS IN AN INVISCID GAS MEDIUM
Atomization and Sprays, Vol.25, 2015, issue 2
F. M. F. Elsabaa, G. M. Moatimid, Mohamed F. El-Sayed, M. F. E. Amer
THREE-DIMENSIONAL TEMPORAL INSTABILITY OF NON-NEWTONIAN LIQUID SHEETS
Atomization and Sprays, Vol.11, 2001, issue 1
Günter Brenn, Zhengbai Liu, Franz Durst
DUAL-MODE LINEAR ANALYSIS OF TEMPORAL INSTABILITY FOR POWER-LAW LIQUID SHEET
Atomization and Sprays, Vol.26, 2016, issue 4
Han-Yu Deng, Xiao-Song Wu, Feng Feng
THREE-DIMENSIONAL INSTABILITY OF NON-NEWTONIAN VISCOELASTIC LIQUID JETS ISSUED INTO A STREAMING VISCOUS (OR INVISCID) GAS
International Journal of Fluid Mechanics Research, Vol.44, 2017, issue 2
F. M. F. Elsabaa, G. M. Moatimid, Mohamed F. El-Sayed, M. F. E. Amer