图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.737 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 30, 2020 卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.2012005918
pages 581-601

VACUUM-ASSISTED GAS ATOMIZATION OF LIQUID METAL

Steven P. Mates
National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
S. D. Ridder
National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
F. S. Biancaniello
National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
T. Zahrah
MATSYS, Inc., Sterling, VA, 20166, USA

ABSTRACT

Vacuum-assisted gas atomization of liquid metal is explored. The investigation is motivated by observations of liquid metal atomization that indicate that secondary atomization is sustained over an extended distance from the nozzle tip. Increasing the velocity of the gas flow downstream of the nozzle exit by lowering the nozzle back pressure below ambient may therefore improve atomization efficiency. Supersonic jets grow in length when the nozzle back pressure is lowered due to an increase in the nozzle pressure ratio. However, since the nozzle mass flux remains fixed, any improvements in vacuum-assisted atomization efficiency will be realized without any increase to the gas-to-metal mass flow ratio, which is of interest both academically and practically as gas consumption can be costly. Small (25-kg batch) atomization runs were performed using an Al-Cu-Ni glass-forming alloy in which a high-mass-flow vacuum system was employed to maintain a sub-ambient chamber pressure over the course of an entire run. The powder produced in this manner was then compared to the conventional method without the vacuum system operating. Results demonstrate that atomizing into a partial vacuum decreases the frequency of the coarsest particles in the powder size distributions, leading to a narrower particle size distribution. Further, they underscore the importance of the axial length scale affecting secondary atomization that is related to, but not fully described by, the gas-to-liquid mass flux ratio. The present experiments point out a significant and unexplored parameter space that may be exploited to increase control over particle size distributions.


Articles with similar content:

EFFERVESCENT ATOMIZATION OF HIGH-VISCOSITY FLUIDS: PART I. NEWTONIAN LIQUIDS
Atomization and Sprays, Vol.1, 1991, issue 3
Paul E. Sojka, Harry N. Buckner
DROPLET SIZE AND VELOCITY MEASUREMENTS IN A CRYOGENIC JET FLAME OF A ROCKET-TYPE COMBUSTOR USING HIGH-SPEED IMAGING
Atomization and Sprays, Vol.26, 2016, issue 5
Yves Le Sant, Arnaud Ristori, Lucien Vingert, Nicolas Fdida
DEVELOPMENT OF AN AIR-BLAST ATOMIZER FOR INDEPENDENT CONTROL OF DROPLET SIZE AND SPRAY DENSITY
Atomization and Sprays, Vol.14, 2004, issue 3
C. P. Koshland, R. F. Sawyer, H. L. Clack, D. Lucas
ATOMIZATION OF VISCOUS MELTS
Atomization and Sprays, Vol.15, 2005, issue 2
C. Czisch, P. Schreckenberg, Udo Fritsching, H. Lohner, Klaus Bauckhage
STRING CAVITATION IN A FUEL INJECTOR
Atomization and Sprays, Vol.27, 2017, issue 3
Tokihiro Katsui, Akira Sou, Shigeru Nishio, Raditya Hendra Pratama