图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.737 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.2013007851
pages 623-641

ANALYZING THE CYCLE-TO-CYCLE VARIATIONS OF PULSING SPRAY CHARACTERISTICS BY MEANS OF THE PROPER ORTHOGONAL DECOMPOSITION

Hao Chen
Tula Technology, Inc.
David L. S. Hung
University of Michigan-Shanghai Jiao Tong University Joint Institute Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
Min Xu
School of Mechanical Engineering, Shanghai Jiao Tong University, National Engineering Laboratory for Automotive Electronic Control Technology, Shanghai 200240, China
Jie Zhong
University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China

ABSTRACT

This paper presents a novel approach to analyze the cycle-to-cycle variations of pulsing spray characteristics. The purpose is to quantify the cycle-to-cycle variations of the macroscopic characteristics of spark-ignition direct-injection (SIDI) fuel injector spray, so that improvements of air-fuel mixture formation can be made to enhance the combustion efficiency and reduce emissions of SIDI engines. The experiments were carried out using an eight-hole SIDI fuel injector under a controlled ambient environment with an extended range of test conditions. Using a strobe light as an illumination source, multiple cycles of macroscopic spray structure images at a fixed injection delay time were taken by a CCD camera. The proper orthogonal decomposition (POD) technique was implemented to analyze the cycle-to-cycle characteristics of spray variation. In addition, the effects of injection pressure, ambient pressure, and fuel type on spray variation were also investigated. POD analysis reveals that the mode 1 pattern captured the ensemble-averaged spray shape, the mode 2 pattern provided quantification of spatial fuel distribution variations of different cycles of spray, and higher mode patterns further quantified the finer details of the variations surrounding the well-atomized periphery of the spray structure. POD analysis also quantitatively confirms that better-atomized sprays led to slightly higher variations of finer structures along the spray boundary. Overall, this study demonstrates that POD analysis can be used as a novel approach to quantify the cycle-to-cycle variation of pulsing spray characteristics.


Articles with similar content:

INVESTIGATIONS OF COMMON-RAIL FUEL INJECTION TECHNIQUE IN DI-DIESEL-ENGINES
Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000) Volume I-IV, Vol.0, 2000, issue
Franz Mayinger, B. Ofner, S. Eisen
STUDIES OF GASOLINE DIRECT-INJECTION SPRAYS AT ELEVATED AMBIENT GAS TEMPERATURES AND PRESSURES
Atomization and Sprays, Vol.22, 2012, issue 4
M. Gold, Phil J. Bowen, S. M. Sapsford, Peter J. Kay
ANALYSIS OF SIZE-CLASSIFIED SPRAY STRUCTURE AND ATOMIZATION MECHANISM FOR A GASOLINE DIRECT INJECTOR
Atomization and Sprays, Vol.14, 2004, issue 6
Chang Sik Lee, Chang Hee Lee
SPRAY AND FLOW-FIELD INTERACTION OF GASOLINE DIRECT INJECTION
Atomization and Sprays, Vol.14, 2004, issue 2
Jaejoon Choi, Seokhwan Lee
DEVELOPMENT OF PSEUDO-HIGH SPEED IMAGE PHOTOGRAPHIC SYSTEM AND THEIR APPLICATION TO DIESEL SPRAYS
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
N. Shimazaki, G. Ogihara, M. Nakayama