图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.737 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 30, 2020 卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.2015013725
pages 1151-1175

EFFECTS OF SPRAY PATTERNS ON THE MIXTURE FORMATION PROCESS IN MULTI-HOLE-TYPE DIRECT INJECTION SPARK IGNITION (DISI) GASOLINE ENGINES

Taehoon Kim
Department of Mechanical Convergence Engineering, Graduate School of Hanyang University, Seoul 133791, Republic of Korea; Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign MEB, 1206 W. Green St. Urbana, IL 61801, USA
Sungwook Park
School of Mechanical Engineering, Hanyang University, Seoul 133791, Republic of Korea

ABSTRACT

The direct injection concept is a prominent issue in spark ignition engines owing to direct injection's high fuel efficiency. However, proper fuel−air mixing technology is necessary to restrict exhaust emissions. Mixture preparation requires an understanding of the complex phenomena and physics regarding direct injection spark ignition (DISI) gasoline engines. Multihole-type DISI gasoline injectors can be used to generate various spray patterns. In this study, five types of spray patterns were considered for mixture preparation simulation: reference-type, circle-type, triangle-type, T-type, and Y-type patterns. Mass flow rate and initial droplet size were assumed to be the same for each nozzle. Also, cavitation for each nozzle was considered to be equal. Numerical analysis was carried out for wide open throttle conditions with a fixed engine speed (1500 rpm). Injection timing was set to BTDC 360 degrees, BTDC 315 degrees, and BTDC 270 degrees. The spray model and motoring pressure were validated before mixture preparation analysis. The BTDC 360 degree injection case was characterized by instant vaporization, whereas the BTDC 315 degree injection case was characterized by a fuel injection−dominant case, and the BTDC 270 degree injection case was characterized by a spray−flow interaction-dominant case. T-type and Y-type spray patterns showed faster evaporation than reference-type, circle-type, and triangle-type spray patterns.


Articles with similar content:

DYNAMIC STRUCTURE OF DIRECT-INJECTION GASOLINE ENGINE SPRAYS: AIR FLOW AND DENSITY EFFECTS
Atomization and Sprays, Vol.12, 2002, issue 4
Julian T. Kashdan, John S. Shrimpton, C. Arcoumanis
INVESTIGATION OF RAPID ATOMIZATION AND COLLAPSE OF SUPERHEATED LIQUID FUEL SPRAY UNDER SUPERHEATED CONDITIONS
Atomization and Sprays, Vol.26, 2016, issue 12
Hujie Pan, David L. S. Hung, Tianyun Li, Min Xu, Shengqi Wu
MORPHOLOGICAL EXPLORATION OF EMERGING JET FLOWS FROM MULTI-HOLE DIESEL INJECTORS AT DIFFERENT NEEDLE LIFTS
Atomization and Sprays, Vol.25, 2015, issue 5
Xusheng Zhang, Jin Wang, Xingbin Xie, Kamel Fezzaa, Fengkun Wang, Jian Gao, Eric M. Dufresne, Seoksu Moon, Ming Chia Lai
MODELING OF n-HEPTANE SPRAYS INJECTED THROUGH MULTI-HOLE TYPE GDI INJECTOR
Atomization and Sprays, Vol.22, 2012, issue 3
Sungwook Park, Sanghoon Lee, Yunjung Oh
CHARACTERIZATION OF INITIAL SPRAY FROM A D.I. GASOLINE INJECTOR BY HOLOGRAPHY AND LASER DIFFRACTION METHOD
Atomization and Sprays, Vol.14, 2004, issue 5
Tie Li, Keiya Nishida, Hiroyuki Hiroyasu