图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.737 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 30, 2020 卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.v14.i1.40
28 pages

MODELING THE PRIMARY BREAKUP OF HIGH-SPEED JETS

Rolf D. Reitz
Engine Research Center, University of Wisconsin-Madison, Rm 1018A, 1500 Engineering Drive, Madison, Wisconsin 53706, USA

ABSTRACT

A new jet primary breakup model is proposed and applied to high-speed jets to predict the primary breakup characteristics. The liquid jet is modeled by discrete blobs. Initial conditions, such as jet diameter, injection velocity, and initial disturbances on the liquid jet, are provided by a nozzle flow model to reflect the effects of nozzle internal flow. The breakup characteristics of the jet are calculated by tracking the wave growth on the surface of each liquid blob using a one-dimensional Eulerian approach. Novel initial and periodic boundary conditions are applied to the computational domain that allow consideration of the unstable growth of complex initial disturbances. The surface structure of a blob is decomposed into a combination of waves with different wavelengths and is expressed in a Fourier series using a fast Fourier transform (FFT). The drops that are stripped from the surface are calculated from the surface wavelengths and amplitudes, as indicated by the Fourier coefficients. A multilayer drop-stripping model is proposed and multidimensional effects are included by reflecting the surface structure in the axial direction into the peripheral direction, as suggested by high-speed jet experiments that show that surface wavelengths are approximately isotropic. The new breakup model has been implemented in the multidimensional KIVA computational fluid dynamics (CFD) code to simulate spray atomization. The breakup model has been used to predict drop size, jet breakup length, and spray liquid penetration length. Comparisons with experimental data indicate that the new breakup model significantly improves spray predictions over standard atomization models that are based on linear jet stability theories.


Articles with similar content:

A ONE-DIMENSIONAL BREAKUP MODEL FOR LOW-SPEED JETS
Atomization and Sprays, Vol.12, 2002, issue 5&6
Rolf D. Reitz
PREDICTION OF DROP SIZE DISTRIBUTIONS FROM FIRST PRINCIPLES: THE INFLUENCE OF FLUCTUATIONS IN RELATIVE VELOCITY AND LIQUID PHYSICAL PROPERTIES
Atomization and Sprays, Vol.9, 1999, issue 2
Paul E. Sojka, Yudaya R. Sivathanu, Sandeep D. Sovani
THE STOCHASTIC LAGRANGIAN MODEL OF DROP BREAKUP IN THE COMPUTATION OF LIQUID SPRAYS
Atomization and Sprays, Vol.11, 2001, issue 5
Mikhael Gorokhovski
A MODEL FOR NUMERICAL SIMULATION OF BREAKUP OF A LIQUID JET IN CROSSFLOW
Atomization and Sprays, Vol.13, 2003, issue 4
Ravi K. Madabhushi
THE INTERNAL FLOW AND EXIT CONDITIONS OF PRESSURE SWIRL ATOMIZERS
Atomization and Sprays, Vol.10, 2000, issue 2
J. J. Chinn