图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.737 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 30, 2020 卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.v12.i4.100
pages 539-557

DYNAMIC STRUCTURE OF DIRECT-INJECTION GASOLINE ENGINE SPRAYS: AIR FLOW AND DENSITY EFFECTS

Julian T. Kashdan
I.F.P., Rueil-Malmaison, France
John S. Shrimpton
Energy Technology Research Group, School of Engineering Sciences, University of Southampton, United Kingdom, SO171BJ
C. Arcoumanis
School of Engineering, City University, London

ABSTRACT

The characteristics of the hollow-cane fuel spray produced by a centrally- located pressure-swirl atomizer have been investigated in a constant-volume pressure chamber and in a motored single-cylinder direct-injection spark-ignition (DISI) research engine. The aim is to describe the effect of elevated chamber pressure and in-cylinder bulk air motion on the spray development process. In addition to ambient conditions, chamber pressures of 5 and 7 bar absolute, corresponding to air densities of 5.82 and 8.14kg/m3, respectively, at atmospheric temperature (300 К), were investigated as these conditions are representative of the range of in-cylinder pressure and densities corresponding to "early" through 'late" injection strategies. Spray dynamics in a constant-volume chamber, under near-quiescent flow conditions, are shown to be representative of in-cylinder sprays and therefore provide appropriate means for evaluating the relative effect of the intake air flow and in-cylinder density on the fuel spray development process. A wide range of operating conditions of a four-valve DISI engine with a centrally located pressure-swirl atomizer were examined at engine speeds of 700 and 1500 rpm and for four start-of-injection (SOI) timings of 90', 180', 270', and 300' after top-dead-center (aTDC) of intake. The results revealed that fuel spray impingement on the flat piston occurred only with injection at 300' ATDC, and that larger droplets are produced by pressure-swirl atomizers operating at higher gas pressures which suggests that achieving consistent late injection strategies for low-load operation with spray-guided systems using such injector designs may be an insurmountable problem.


Articles with similar content:

Effects of Fuel Viscosity and Ambient Temperature on Spray Characteristics from Multi-Hole Nozzle Injectors
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 1-3
C. B. Warrick, J. M. Kozma, T. F. Su, Patrick V. Farrell
EXPERIMENTAL INVESTIGATION OF NEAR NOZZLE SPRAY STRUCTURE AND VELOCITY FOR A GDI HOLLOWCONE SPRAY
Atomization and Sprays, Vol.20, 2010, issue 12
D. Martin, Reinhold Kneer, Philipp Pischke, M. Cardenas
EFFECT OF OPERATING CONDITIONS AND FUEL VOLATILITY ON DEVELOPMENT AND VARIABILITY OF SPRAYS FROM GASOLINE DIRECT-INJECTION MULTIHOLE INJECTORS
Atomization and Sprays, Vol.19, 2009, issue 3
Pavlos Aleiferis, Z. van Romunde
CHARACTERIZATION OF HIGH-INJECTION-PRESSURE DIESEL SPRAYS WITH RELATION TO PARTICULATE AND NOx EMISSIONS
Atomization and Sprays, Vol.8, 1998, issue 1
T. F. Su, Patrick V. Farrell
EXPERIMENTAL INVESTIGATION OF SPRAY CHARACTERISTICS OF DIESEL-METHANOL-WATER EMULSION
Atomization and Sprays, Vol.25, 2015, issue 8
Wuqiang Wang, Shenteng Cao, Dongyin Wu, Junjie Yan, Zhenzhou Pang