图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.737 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 30, 2020 卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.v12.i4.70
pages 463-500

NUMERICAL STUDIES OF AIR-ASSISTED SPRAYS

Dar-Lon Chang
Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 140 Mechanical Engineering Building, 1206 West Green Street, Urbana, IL 61801
Chia-Fon Lee
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; Department of Mechanical Science and Engineering, the University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA

ABSTRACT

Simulations were made of sprays from a Ford Air-Assisted Fuel Injector to ascertain the importance of numerical arid modeling issues. A previously developed injector model was implemented and appropriate boundary conditions were applied to an axisymmetric domain. Numerical studies were conducted to assess the effects of grid resolution, boundary placement, timestep size, and number of injected parcels. Modeling studies also showed that secondary droplet breakup and collision phenomena should not be neglected, and that the use of a multicomponent fuel produces spray images that are nearly identical to those of a single-component fuel. However, the fuel vaporization of a multicomponent case is significantly different from that of a single-component case. These numerical and modeling studies established baseline simulations for a low- and a high-ambient pressure case (0.1 and 0.445 MPa, respectively), and the simulated spray images showed good agreement with experimental spray photographs of transient injection events from the Ford injector.


Articles with similar content:

AUTOIGNITION CHARACTERISTICS OF DIESEL SPRAYS UNDER DIFFERENT INJECTION CONDITIONS
Atomization and Sprays, Vol.6, 1996, issue 4
Raffaele Ragucci, Antonio Cavaliere, C. Noviello
EXPERIMENTAL AND NUMERICAL ANALYSIS OF SPRAY DISPERSION AND EVAPORATION IN A COMBUSTION CHAMBER
Atomization and Sprays, Vol.19, 2009, issue 10
Andreas Dreizler, Johannes Janicka, Amsini Sadiki, M. Hage, Mouldi Chrigui
NUMERICAL INVESTIGATION OF VARIOUS SPRAY BREAKUP AND DROPLET COLLISION MODELS IN THE MODELING OF IN-CYLINDER FUEL SPRAY
Atomization and Sprays, Vol.22, 2012, issue 10
M. Mofarrahi, Reza Kamali
MODELING OF n-HEPTANE SPRAYS INJECTED THROUGH MULTI-HOLE TYPE GDI INJECTOR
Atomization and Sprays, Vol.22, 2012, issue 3
Sungwook Park, Sanghoon Lee, Yunjung Oh
2-D LASER SHEET VISUALIZATION OF A PULSED HOLLOW CONE SPRAY: STAGNANT AND SIMULATED TWO-STROKE ENGINE ENVIRONMENTS
Atomization and Sprays, Vol.1, 1991, issue 1
Douglas Talley, M. Morris, Y. C. Lin