图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
雾化与喷雾
影响因子: 1.737 5年影响因子: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 打印: 1044-5110
ISSN 在线: 1936-2684

卷:
卷 30, 2020 卷 29, 2019 卷 28, 2018 卷 27, 2017 卷 26, 2016 卷 25, 2015 卷 24, 2014 卷 23, 2013 卷 22, 2012 卷 21, 2011 卷 20, 2010 卷 19, 2009 卷 18, 2008 卷 17, 2007 卷 16, 2006 卷 15, 2005 卷 14, 2004 卷 13, 2003 卷 12, 2002 卷 11, 2001 卷 10, 2000 卷 9, 1999 卷 8, 1998 卷 7, 1997 卷 6, 1996 卷 5, 1995 卷 4, 1994 卷 3, 1993 卷 2, 1992 卷 1, 1991

雾化与喷雾

DOI: 10.1615/AtomizSpr.v14.i4.20
14 pages

EFFERVESCENT ATOMIZATION OF GASOLINE CONTAINING DISSOLVED CO2

A. Rashkovan
The Pearlstone Center for Aeronautical Studies, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
V. Kholmer
The Negev Academic College, Beer-Sheva, Israel
Eran Sher
Ben-Gurion University of Negev, Israel

ABSTRACT

An experimental study of the steady-state atomization process of gasoline containing dissolved CO2, is presented. A fuel injection system has been designed to produce a spray having a lower Sauter mean diameter (SMD) than that obtained typically with a direct fuel injection system for the same injection pressure. The downstream part of the injector consists of an inlet orifice, an expansion chamber, a swirl duct, and a discharge orifice. When the mixture enters the expansion chamber, apart of the dissolved gas is transformed into tiny bubbles that grow inside the expansion chamber. When the mixture is driven out through the discharge orifice, these bubbles undergo a rapid flashing process, resulting in a rapid disintegration of the liquid bulk into small droplets. In the present work, we investigate experimentally the effect of the design parameters (geometric proportions, injection pressure, and CO2 content) on the spray characteristics. The spray characteristics (SMD and D90) were measured with a laser particle size analyzer (Malvern X-Mastersizer), and a digital camera was employed to record the spray angle. An overall analysis has been performed to evaluate the advantage of the proposed method over its counterparts, in terms of the total energy required to produce a desired spray. It is concluded that the atomization of gasoline fuel containing dissolved CO2 is significantly promoted by the flash-boiling phenomenon and results in low-SMD and -D90 sprays. It was also found that the spray structure of a fuel/dissolved gas mixture is essentially different from that of a single-component fuel.


Articles with similar content:

SPRAY CHARACTERISTICS OF DIESEL FUEL CONTAINING DISSOLVED CO2
Atomization and Sprays, Vol.21, 2011, issue 11
Eran Sher, M. Karaeen
CHARACTERIZATION OF INITIAL SPRAY FROM A D.I. GASOLINE INJECTOR BY HOLOGRAPHY AND LASER DIFFRACTION METHOD
Atomization and Sprays, Vol.14, 2004, issue 5
Tie Li, Keiya Nishida, Hiroyuki Hiroyasu
AN EXPERIMENTAL STUDY ON SPRAY TRANSIENT CHARACTERISTICS IN FUEL CONTAINING CO2
Atomization and Sprays, Vol.19, 2009, issue 4
Zhen Huang, Qiao Xinqi, Ma Junjun, Jin Xiao
INFLUENCE OF VORTEX FLOW AND CAVITATION ON NEAR-NOZZLE DIESEL SPRAY DISPERSION ANGLE
Atomization and Sprays, Vol.19, 2009, issue 3
Manolis Gavaises, A. Andriotis
SINGLE-FLUID AND DUAL-FLUID ATOMIZATION METHODS: LOCAL AND GLOBAL SPRAY QUANTITIES
Atomization and Sprays, Vol.17, 2007, issue 2
Holger Lienemann, Julian T. Kashdan, John S. Shrimpton