图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际计算热科学期刊
ESCI SJR: 0.249 SNIP: 0.434 CiteScore™: 1.4

ISSN 打印: 1940-2503
ISSN 在线: 1940-2554

国际计算热科学期刊

DOI: 10.1615/ComputThermalScien.2019028935
pages 509-522

MODELING TURBULENT COMPRESSIBLE FLOW WITH THERMAL EFFECTS USING AN HP-FINITE-ELEMENT TECHNIQUE

Xiuling Wang
Mechanical and Civil Engineering Department, Purdue University Northwest, Hammond, IN, 46323, USA
David Carrington
Los Alamos National Laboratory
Darrell W. Pepper
NCACM, Department of Mechanical Engineering, University of Nevada Las Vegas, Las Vegas, NV 89154, USA

ABSTRACT

An hp-adaptive predictor-corrector split (PCS) finite-element model (FEM) is used to simulate subsonic, transonic turbulent compressible flow. The hp-adaptive algorithm is based on mesh refinement and increasing spectral order to generate accurate simulation results with an exponential converge rate; the PCS projection method employs a fractional step FEM, and it has been shown to produce accurate results over a wide range of flow speeds. A k-ω turbulent closure scheme is used in conjunction with the turbulent form of the Navier-Stokes equations. The hp-FEM PCS system is currently being combined with Los Alamos National Laboratory's spray and chemistry models to advance the accuracy and range of applicability of the KIVA combustion model and software. Test cases results for subsonic flow and transonic flow around NACA0012 airfoil are presented, and good agreement with experimental data is observed. Simulations are conducted for full-scale and microscale airfoils under different thermal effects, and the aerodynamics performance under different conditions are compared.

REFERENCES

  1. Albretani, R., Standford, B., Deloach, R., Hubner, J.P., and Ifju, P., Wind-Tunnel Testing and Modelling of a Micro Air Vehicle with Flexible Wings, J. Aircraft, vol. 45, no. 3, pp. 1025-1032,2008.

  2. Ananda, G.K., Sukumar, P.P., and Selig, M.S., Measured Aerodynamic Characteristics of Wings at Low Reynolds Numbers, Aerosp. Sci. Technol., vol. 42, pp. 392-406, 2015.

  3. Bekka, N., Bessalh, R., Sellam, M., and Chpoun, A., Numerical Study of Heat Transfer around the Small Scale Airfoil Using Various Turbulence Models, Numer. Heat Transf. Part A: Appl., vol. 56, no. 12, pp. 946-969, 2009.

  4. Bauer, A.C. and Patra, A.K., Performance of Parallel Preconditioners for Adaptive hp FEM Discretization of Incompressible Flows, Comm. Numer. Meth. Eng., vol. 18, pp. 305-313, 2002.

  5. Bhat, S. and Govardhan, R., Stall Flutter of NACA 0012 Airfoil at Low Reynolds Numbers, J. Fluids Struct., vol. 41, pp. 166-174, 2013.

  6. Breuckner, F.P. and Heinrich, J.C., Petrov-Galerkin Finite Element Model for Compressible Flows, Int. J. Num. Meth. Fluids, vol. 32, pp. 255-274, 1991.

  7. Carrington, D.B., Wang, X., and Pepper, D.W., A Predictor-Corrector Split Projection Method for Turbulent Reactive Flow, Comput. Therm. Sci., vol. 5, no. 4, pp. 333-353,2013.

  8. Devi, P., Paulson, V., Madhanraj, V., and Shah, D., Heat Transfer and Temperature Effects on a Dimpled NACA0012 Airfoil with Various Angles of Attack, Int. J. Ambient Energy, vol. 39, pp. 783-786, 2017.

  9. Ellington, C.P. and Usherwood, J.R., Lift and Drag Characteristics of Rotary and Flapping Wings, Prog. Aeronaut. Astronaut., vol. 195, Chap. 12, pp. 231-248, 2001.

  10. Guo, B. and Babuska, I., The h-p Version of the Finite Element Method, Part 1, Comp. Mech., vol. 1, pp. 21-41,1986.

  11. Kim, J. and Koratkar, N., Aerodynamic Design Considerations for Micro-Rotorcraft, Proc. of the AHS 58th Annual Forum and Technology Display, Alexandra, VA, pp. 2181-2196, 2002.

  12. Kim, J., Rusak, Z., and Koratkar, N., Small-Scale Airfoil Aerodynamic Efficiency Improvement by Surface Temperature and Heat Transfer, AIAA J, vol. 41, no. 11, pp. 2105-2113,2003.

  13. Lin, J., Wei, C., and Lin, C., Aerodynamic Performance of Thin Wings at Low Reynolds Numbers, Aircr. Eng. Aerosp. Technol., vol. 81, no. 1,pp. 51-58,2009.

  14. McCrokey, W.J., A Critical Assessment of Wind Tunnel Results for the NACA0012 Airfoil, Tech. Rep. NASA-TP-100019,1987.

  15. Mueller, T.J. and Delaurier, J.D., Aerodynamics of Small Vehicles, Ann. Rev. Fluid Mech., vol. 35, pp. 89-111, 2003.

  16. Oden, J.T., Kennon, S.R., Tworzydlo, W.W., Bass, J.M., and Berry, C., Progress on Adaptive hp-Finite Element Methods for the Incompressible Navier-Stokes Equations, Comput. Mech., vol. 11, pp. 421-432, 1993.

  17. Oden, J.T., Wu, W.H., and Ainsworth, M., Three-Step h-p Adaptive Strategy for the Incompressible Navier-Stokes Equations, The IMA Volume, Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations, Berlin: Springer, pp. 347-366,1995.

  18. O'Meara, M.M. and Mueller, T.J., Laminar Separation Bubble Characteristics on an Airfoil at Low Reynolds Number, AIAA J, vol. 25, no. 8, pp. 1033-1041,1987.

  19. Pepper, D.W. and Wang, X., A Self-Adapting Model for Assessing Hazardous Environmental Releases, Nat. Haz. J., vol. 44, pp. 387-397, 2008.

  20. Pepper, D.W. and Wang, X., An hp-Finite Element Method for Simulating Indoor Contaminant Dispersion, Build. Simul., vol. 4, pp. 33-40,2011.

  21. Peraire, J., Vahdati, M., Morgan, K., and Zienkiewicz, O.C., Adaptive Remeshing for Compressible Flows, J. Comp. Phys., vol. 72, no. 2, pp. 449-466, 1987.

  22. Thibert, J.J., Grandjacques, M., and Ohman, L.H., NACA0012 AIRFOIL, Tech. Rep. AGARD-AR-138-A1, 1979.

  23. Wang, X., Carrington, D., and Pepper, D.W., Adaptive FEM Model for Unsteady Turbulent Convective Flow over a Backward-Facing Step, Comput. Therm. Sci., vol. 1, no. 2, pp. 121-135, 2009.

  24. Wang, X. and Pepper, D.W., hp-Adaptive FEM Simulations of Viscous Flow Including Convective Heat Transfer, Num. Heat Transf., vol. 51, no. 6, pp. 491-513, 2007a.

  25. Wang, X. and Pepper, D.W., Application of an hp-Adaptive FEM for Solving Thermal Flow Problems, AIAA J. Thermophys. Heat Transf, vol. 21, no. 1, pp. 190-198, 2007b.

  26. Wang, X. and Pepper, D.W., Numerical Simulation for Natural Convection in Vertical Channels, Int. J. Heat Mass Transf, vol. 52, pp. 4095-4102,2009.

  27. Wilcox, D.C., Turbulence Modeling for CFD, La Canada, CA: DCW Industries, 2003.

  28. Zienkiewicz, O.C. and Codina, R., A General Algorithm for Compressible and Incompressible Flow, Part I: The Split Characteristic based Scheme, Int. J. Num. Methods Fluids, vol. 20, pp. 869-885, 1995.

  29. Zienkiewicz, O.C., Morgan, K., Satya Sai, B.V.K., Codina, R., and Vasquez, M., A General Algorithm for Compressible and Incompressible Flow, Part II: Tests on the Explicit Form, Int. J. Num. Methods Fluids, vol. 20, pp. 887-913,1995.

  30. Zienkiewicz, O.C. and Zhu, R.J., A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis, Int. J. Num. Methods Eng., vol. 24, pp. 337-357, 1987.


Articles with similar content:

An HP-Adaptive Predictor-Corrector Split Projection Method for Turbulent Compressible Flow
International Heat Transfer Conference 15, Vol.10, 2014, issue
Xiuling Wang, David Carrington, Darrell W. Pepper
A PREDICTOR-CORRECTOR SPLIT PROJECTION METHOD FOR TURBULENT REACTIVE FLOW
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Xiuling Wang, David Carrington, Darrell W. Pepper
PREDICTOR−CORRECTOR SPLIT PROJECTION METHOD FOR TURBULENT REACTIVE FLOW
Computational Thermal Sciences: An International Journal, Vol.5, 2013, issue 4
Xiuling Wang, David Carrington, Darrell W. Pepper
Simulation of turbulent cavitating flow in water turbine using RANS approach
ICHMT DIGITAL LIBRARY ONLINE, Vol.10, 2006, issue
A. A. Dekterev, K. A. Finnikov, A. A. Gavrilov
NUMERICAL STUDY OF SEPARATED FLOW IN A PLANE ASYMMETRIC DIFFUSER
TSFP DIGITAL LIBRARY ONLINE, Vol.3, 2003, issue
Johan Gullman-Strand, Arne V. Johansson, Gustav Amberg